
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
CHANNEL CAT:

A TACTICAL LINK ANALYSIS TOOL

by

Michael Glenn Coleman

September 1997

Thesis Advisor: Luqi

Approved for public release; distribution is unlimited

19980106 032
DTIC qU• INSPEC=TD 4

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
nformation. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1997 Master's Thesis

4. TITLE AND SUBTITLE CHANNEL CAT: A TACTICAL LINK ANALYSIS TOOL 5. FUNDING NUMBERS

6. AUTHOR(S)
Coleman, Michael G.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND AD'DRESS(ES) 10. SPONSORING/MONITORING
Marine Corps Tactical Systems Support Activity AGENCY REPORT NUMBER
Camp Pendleton, California N/A
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or
rosition of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; 12b. DISTRIBUTION CODE
distribution is unlimited

13. ABSTRACT (maximum 200 words)
The Tri-Service Tactical (TRI-TAC) standards for tactical data links mandate a terminal data rate of 32,000 bits per second. As

geater demands for data throughput are placed upon tactical networks, it will become imperative that the design of future client/server
architectures do not exceed the capacity of the TRI-TAC networks. This thesis produced an analysis tool, the Channel Capacity Analysis
Tool (Channel CAT), designed to provide an automated tool for the anlysis of design decisions in developing client-server software.

The analysis tool, built using the Computer Aided Prototyping System (CAPS), provides designers the ability to input TRI-TAC
channel parameters and view the results of the simulated channel traffic in graphical format. The size of data, period of transmission,
and channel transmission rate can be set by the user, with the results displayed as a percent utilization of the maximum capacity of the
channel.

.Designed using fielded equipment specifications, the details of the network mechanisms closely simulate the behavior of the actual
tactical links. Testing has shown Channel CAT to be stable and accurate. As a result of this effort, Channel CAT provides software
ngineers an ability to test design decisions for client-server software in a rapid, low-cost manner.

14. SUBJECT TERMS United States Marine Corps, command, control, network, time division 15. NUMBER OF PAGES
multiplex, links, analysis, modeling, prototyping. 101

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT UL

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

CHANNEL CAT:
A TACTICAL LINK ANALYSIS TOOL

Michael Glenn Coleman
Captain, United States Marine Corps

B.S., United States Naval Academy, 1988

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author: /544 Z _ _- --_ ____....
Michael Glenn Coleman

Approved by: __
,L Lui,G1 Thei Ad isorf

MichalJ oen eodRader

Ted Lewis, Chairman
Department of Computer Science

iii

iv

ABSTRACT

The Tri-Service Tactical (TRI-TAC) standards for tactical data links mandate a terminal

data rate of 32,000 bits per second. As greater demands for data throughput are placed

upon tactical networks, it will become imperative that the design of future client/server

architectures do not exceed the capacity of the TRI-TAC networks. This thesis produced

an analysis tool, the Channel Capacity Analysis Tool (Channel CAT), designed to provide

an automated tool for the anlysis of design decisions in developing client-server software.

The analysis tool, built using the Computer Aided Prototyping System (CAPS),

provides designers the ability to input TRI-TAC channel parameterand view the results

of the simulated channel traffic in graphical format. The size of data, period of

transmission, and channel transmission rate can be set by the user, with the results

displayed as a percent utilization of the maximum capacity of the channel.

Designed using fielded equipment specifications, the details of the network

mechanisms closely simulate the behavior of the actual tactical links. Testing has shown

Channel CAT to be stable and accurate. As a result of this effort, Channel CAT provides

software engineers an ability to test design decisions for client-server software in a rapid,

low-cost manner.

v

vi

TABLE OF CONTENTS

IN TRODU CTION ... 1

A . BA CK GROU ND .. 1

B. M O TIV A TION .. 1

C. SU M M ARY OF CH APTER S ... 4

II. THE TRI-SERVICE TACTICAL NETWORK .. 5

A . BA CK GROU ND ... 5

1. Tim e D ivision M ultiplexing .. 5

2. N ecessity .. 5

3. Solution ... 7

B. SPECIFICATION S .. 7

1. D ata Rate ... 8

2. Error Rates .. 8

C. CH A PTER SU M M AR Y .. 9

III. CH ANN EL CAT D ESIGN AN D U SE ... 11

A. COMPUTER AIDED PROTOTYPING SYSTEM 11

1. Overview .. 11

2. Prototyping Process ... 11

3. Prototype System Description Language 12

a. Operators .. 12

b. Stream s .. 12

c. Types ... 13

d. Tim ing Constraints .. 13

e. Triggers .. 13

f. Execution Guards .. 14

g. State V ariables ... 14

B. A SSU M PTION S .. 14

C. SY STEM DECOM PO SITION ... 15

vii

1. Param eters ... 16

a. Constant ... 16

b. Run Tim e .. 16

2. U ser Interface ... 17

a. Input Panel .. 17

b. Results Panel .. 21

3.. TRI-TAC Link Operators ... 23

a. Transm itter ... 25

b. Receiver .. 27

c. Channel 29

d. Utilization Calculator .. 30

D . OPERA TION ... 31

1. U ser Input ... 31

2. Results ... 31

a. Text-based .. 31

b. Graphics-based ... 32

E. CH APTER SUM M ARY ... 32

IV . TESTIN G AN D VALIDATION ... 35

A . TESTIN G .. 35

1. Plan .. 35

2. Criteria ... 35

B. RESULTS ... 35

1. Accuracy ... 36

2. Boundary Conditions ... 36

3. Fidelity ... 36

C. CHAPTER SUM M ARY ... 38

V . CON CLU SION S ... 39

A.. STRENGTHS OF CHANNEL CAT .. 39

VIII

B. FUTURE WORK ... 40

LIST OF REFERENCES .. 43

BIBLIOGRAPHY .. 45

APPENDIX A PSDL SOURCE CODE .. 47

APPENDIX B ADA SOURCE CODE .. 51

APPENDIX C USER INTERFACE CODE ... 69

APPENDIX D TESTING/VALIDATION CRITERIA AND RESULTS 77

INITIAL DISTRIBUTION LIST ... 85

ix

x

LIST OF FIGURES

Figure 1. Upward TDM Example ... 6

Figure 2. Top-level PSDL Graph of Channel CAT .. 18

Figure 3. Channel CAT Input Panel .. 19

Figure 4. Channel CAT Results Panel .. 22

Figure 5. Results of Assumptions .. 23

Figure 6. Concept Drawing .. 24

Figure 7. PSDL Graph of TRITACLINK Operator .. 26

xi

xii

LIST OF TABLES

Table 1. Range of Acceptable Values for Channel CAT Input Panel Parameters 20

xlin

xiv

I. INTRODUCTION

A. BACKGROUND

Military communications are in the midst of a major revolution. Digital equipment

and transmission mediums have completely permeated the Department of Defense's (DoD)

command and control (C2) infrastructure. This new capability has enhanced the

warfighting ability of all services by providing more reliable means of transmitting digital

data. As the military C2 systems migrate from stand alone systems with little or no

interoperability to a cohesive network of client-server systems employed in a common

operating environment (COE), greater demands will be placed on the Tri-Service Tactical

Network (TRI-TAC). It is an established fact that any distributed system, particularly

client-server designs, experience degraded performance as a result of distributed query

processing. [ELMA94].

B. MOTIVATION

Client-server architectures are a mature technology and place large bandwidth

requirements on networks. The intelligent and prudent design of client-server processes is

paramount if real-time processing demands are to be supported by the TRI-TAC

backbone. Real-time processing and sharing of data is necessary to ensure accurate and

timely decision making by military commanders. The Persian Gulf War exemplified the

power of being able to collect, process, and act upon information. If TRI-TAC follows

the historical lifecycle for military systems, TRI-TAC will remain as the primary network

1

system for many years into the future. Due to the wide-spread use of TRI-TAC within

DoD and budget constraints which will inhibit major restructuring of DoD tactical data

systems, the DoD must focus on the assumption that the network currently employed is

our network for the near future.

The future of TRI-TAC as the backbone of the Marine Air Command and Control

System (MACCS) is of specific importance to this thesis. The MACCS is the collection of

commanders, systems, and weapon platforms primarily responsible for execution of all

aspects of the air battle for the United States Marine Corps (USMC). Heavy data traffic

and large data files are normal, existing in the form of electronic mail, file transfers,

intelligence data, operational orders and documents, facsimile traffic, radar data, database

operations, logistics information, military messages, and digital telephone connections.

The main means of transmitting these many and varied types of information is through the

use of TRI-TAC links, interconnected with various sizes of digital switches.

It is, therefore, absolutely imperative that the limited bandwidth available on the

TRI-TAC network be treated as a precious resource. The client-server systems to be

fielded must employ schemes which minimize network traffic. Gone are the days when

military systems can built under the assumption that it is acceptable to transmit large

pieces of data between systems when only a portion of the data is needed. Systems

designers must either guess at TRI-TAC channel capabilities, spend inordinate amounts of

time computing data to predict the tactical network behavior, or ignore the reality of

limited bandwidth and simply design without regard for the TRI-TAC network

2

capabilities. Obviously, guessing at and ignoring problems are not optimal methods for

system design. The only acceptable alternative for systems designers is to make

complicated calculations to measure every possible set of parameters. A robust analysis

tool can reduce the time and effort involved in making such calculations and can do so

with guaranteed accuracy.

The designer must consider four system parameters. The TRI-TAC channel speed

is constant in theory, with an upper limit of 32,000 bits per second [MAWT93], but

experience has shown this maximum speed to be often unattainable because of such

factors as terrain, vegetation, and weather. Besides the network maximum speed, the

three other factors which influence a TRI-TAC channel's capacity are the size of the data

being passed over the channel, the frequency of data being added to the channel, and the

distance between the logical processes (computers).

Automated tools are needed to support the design of client-server software for

TRI-TAC systems. Channel Capacity Analysis Tool (Channel CAT) was built to simplify

the complex variety of possible combinations of channel speed, data size, period of

transmission, and distance. Channel CAT, detailed within this thesis, was designed and

built using the United States Naval Postgraduate School's (NPS) Computer Aided

Prototyping System (CAPS). Channel CAT is a model of a single channel on a TRI-TAC

link, allowing the user to vary the data and channel parameters. This tool allows a

client-server module designer the ability to test the feasibility of their proposed

client-server module on an accurately simulated TRI-TAC channel.

3

The ability to test design decisions on an accurate model is important in identifying

design flaws before the system is fully developed. Because the cost to fix errors increases

as the system is developed further, it is both sound engineering and responsible cost

control to minimize the introduction of errors and identify errors as early as possible in the

development cycle. [BERZ9 1]

C. SUMMARY OF CHAPTERS

Chapter II provides the pertinent details of the TRI-TAC network. The CAPS

version of Channel CAT is explained in Chapter III. Design decisions are included, as well

as specific information on system decomposition. The testing and validation of Channel

CAT are contained in Chapter IV. Chapter V provides the author's conclusions on this

effort. Three appendices are included. Appendix A contains the Prototype System

Description Language (PSDL) source code for Channel CAT. Appendix B contains both

the Ada source code which was translated from the PSDL code and all Ada packages

written by the author. Appendix C contains the Ada source code for the user interface.

Appendix D contains the test/validation criteria and results for Channel CAT.

4

II. THE TRI-SERVICE TACTICAL NETWORK

A. BACKGROUND

In software engineering, one of the most important steps in providing a software

solution is developing a keen understanding of the real-life issues of the actual problem.

This section provides a cursory explanation of basic time division multiplexing (TDM), the

necessity of using such technology within USMC command and control architectures, and

the basic solution which has been adopted. This information is provided for the readers

with no knowledge of USMC tactical communication needs.

1. Time Division Multiplexing

Multiplexing is an established method for utilizing a single transmission path for

several concurrent connections. Time division multiplexing accomplishes this service by

providing each connection a periodic slice of time during which that connection has sole

use of the entire transmission path. Each connection is part of a circular queue and is

provided sole use of the transmission path during its assigned time slice. This variation of

multiplexing is generally known as upward multiplexing [TANE96]. Figure 1

demonstrates how this multiplexing scheme can be used by two connections to share a

single transmission path.

2. Necessity

The attractive nature of using any multiplexing scheme stems from the ability to

use a single transmission path as a means of providing multiple connections. This reduces

5

the number of physical connections which need to be made in support of command and

A th packet 4th packet rd packett 2ndpacket 1Ist packet

10t 9th 8th I7tAhdI 6th I5th 4th 3rd 2nd 1st
poderiod 2et I eriod eno perod perod period period pno period

5th packet 4th packet rd packet nd packet 1tpcket

Connection #2

Figure 1. Upward TDM Example

control systems. The resulting benefits include reduced equipment costs, greater mobility

through less bulk of equipment, fewer links for communications personnel to install,

operate, and maintain, and greater flexibility and response to changing battlespace

operational requirements. As the need to move digital data within the battlefield increases,

multiplexing systems have become vital in providing a backbone for the command and

control system.

Every facet of the Marine Corps command and control structure, including

administration, intelligence, operations, logistics, planning, and communications, has some

reliance on information technology. When properly designed and managed, information

technology can be a potent force multiplier.

6

3. Solution

The United States Marine Corps used analog Frequency Division Multiplexing

systems in earlier data transmission systems. Such systems are best used only for analog

data such as voice communications. The introduction of digital data from computers,

faxes, and other terminal equipment throughout all the armed services led to a joint effort

to establish a set of standards for digital TDM and interoperability between the services.

The network which sprang forth from this effort is now historically known as the

Tri-Service Tactical Network (TRI-TAC).

TRI-TAC equipment has been fielded and is used in Marine Corps units ranging in

size from Marine Expeditionary Forces commanded by either 2 or 3 star generals down to

operational battalions commanded by Lieutenant Colonels. TRI-TAC equipment is

ruggedized, weather resistant, and easily transported. An obvious premium has been

placed on flexibility and reliability of the systems as part of a command control system.

The ability to utilize digital signals for the transmission of digital data has caused sweeping

changes in the Marine Corps command and control systems. More information of greater

accuracy can be assimilated in a shorter period of time, greatly reducing the time of the

decision cycle of commanders.

B. SPECIFICATIONS

TRI-TAC standards are specified in elaborate detail.[MAIN91] For the purpose of

this discussion, the pertinent details are those concerning network data rates and error

rates.

7

1. Data Rate

TRI-TAC standards prescribe a data rate of 32,000 bits per second (bps) as the

maximum achievable speed for each channel in the multiplexed link. The standards do

address the use of much greater and much lesser speeds, but 32,000 bps was established as

the inter-service speed as a means of ensuring a level of interoperability.

By today's standards, 32,000 bps is not fast. The average household telephone line

can support data rates up to 64,000 bps. Emerging network technologies are utilizing

network speeds at 1 gigabit per second, rougly 30,000 times faster than TRI-TAC. It

should be remembered that this standard is meant to span commands from the national and

allied level to front-line units, where hostile fire and weather conditions often prohibit the

use of delicate network equipment needed to achieve high network speeds.

2. Error Rates

Any military command and control system is subject to degradation from many

sources. Some degradation is caused by environmental factors, such as rain, snow, sand

storms, vegetation, and solar flares. Other problems result from rugged use of the

equipment. Finally, software errors can result in decreased throughput. In military

communications, any link which achieves a bit error rate not exceeding 1 error per 10

million bits is of good quality. This does not mean that all military links are of such good

quality. Often, the operational demands require command and control systems be

employed in a less than ideal manner, thereby resulting in partially degraded systems. As

the bit error rates rise from such factors, error correcting protocols initiate retransmission

8

of lost data. The realized throughput of the links decreases, impacting the speed of the

command and control cycle. The software designer of client-server modules for the

military environment must consider such degradation of channel speed as normal. What

results from such a conclusion is a lack of a guaranteed speed which will always be

available for the links. The software designer now must be heavily concerned with

minimizing the amount of bandwidth used by client-server modules.

C. CHAPTER SUMMARY

TDM has provided military organizations the capability to move digital

information around the battlefield. The United States Marine Corps, in conjunction with

the other armed services, now uses the TRI-TAC network system to support command

and control architectures. TRI-TAC standards call for a data rate of 32,000 bps, but this

often proves to be unattainable due to various factors. The software designer is faced

with developing usable client-server modules which both accomplish the desired tasks and

minimize the bandwidth used while doing so.

9

10

III. CHANNEL CAT DESIGN AND USE

A. COMPUTER AIDED PROTOTYPING SYSTEM

1. Overview

Channel CAT was designed and built using the Computer Aided Prototyping

System (CAPS). CAPS was developed at the United States Naval Postgraduate School

(NPS) Computer Science Department by the CAPS development team. Designed as a

Computer Aided Software Engineering (CASE) tool, CAPS is used to build prototypes of

real-time systems. CAPS is a complete development environment, incorporating graphical

system decomposition and design, interface design and integration, real-time scheduling,

feasibility checking and enforcement, compiler support, and reuse support via a software

base. All the support is accessed through a single user interface.

2. Prototyping Process

Prototyping is widely recognized as an extremely useful method for refining

requirements of proposed systems. The prototyping process is iterative. Initial

requirements are used to design a prototype system, which is demonstrated to the

customer. Based on the performance of the prototype, the customer validates the

prototype. If considered valid, construction of a production system may proceed.

However, if the user has found the performance of the prototype to be unsuitable, the

problems can be addressed by refining the requirements used to build the prototype. The

cycle continues until the customer has been provided a prototype which is considered by

11

them to be valid. With proper software tools, the prototyping cycle can be completed

quite rapidly and at a cost below building actual systems. As discussed earlier, many of

the errors resident in a fielded system are introduced at the requirements analysis stage.

Prototyping cycles can be used to eliminate many errors in the requirements analysis.

3. Prototype System Description Language

This section provides background information and details on several aspects of the

CAPS design representation that were used in the design of Channel CAT. [LUQI97]

a. Operators

Operators are drawn by the designer in the CAPS graphical editor as either

circles or rectangles. Rectangles represent simulations of external systems. Circles

represent the proposed software components. Each operator is assigned a unique name

and can be provided a Maximum Execution Time (MET) from within the graphical editor.

Operators can be decomposed by the designer. Such operators are shown as double

circles and are called composite operators. Any operator which is not decomposed is

called an atomic operator and will be eventually implemented in the Ada programming

language. Operators which output a value based solely on a set of input values are called

functions. An operator whose output is completely or partially based on one or more state

variables is called a state machine.

b. Streams

Streams represent communication and are used to connect operators. Two

types of streams are possible. Sampled streams are those streams which act as the

12

equivalent of a programming variable. Data flow streams are any streams which have a

consuming operator which "fires" on every occurrence of data on the stream and removes

each occurrence after it is read.

c. Types

CAPS has robust facilities for the management of abstract data types

defined by the user. All such types can be implemented in Ada.

d. Timing Constraints

Timing is the major obstacle in understanding and modeling a proposed

real-time software system. CAPS provides strong mechanisms for the establishment and

enforcement of timing constraints. Any operators which are given timing constraints are

considered as time critical and are given scripted, static scheduling priority by CAPS.

Certain timing constraints can be used to modify the behavior of an operator, based on

whether the operator is to be a periodic or sporadic operator. Periodic operators are

assigned a Maximum Execution Time (MET) and a Period (P). They can also be assigned

a Finish Within (FW) time constraint. The MET is the block of CPU time to be scheduled

for the execution of the operator. The Period is used to control how often the operator

executes. FW is used to enforce completion of execution within all or some of the period.

e. Triggers

CAPS has two types of triggers, which restrict the conditions under which

an operator can fire. The "BY ALL" triggers can be assigned to an operator when it is

desired that when, for every stream listed in the triggering set, new data is present. This

13

does not necessarily mean that every stream entering the operator is listed in the triggering

set, but such an arrangement is possible. The second type of triggering, "BY SOMIE", is

similar to "BY ALL" except that new data need only arrive on at least one of the streams

listed in the triggering set to fire the related operator.

f. Execution Guards

Execution guards are another means of regulating the execution of an

operator. These guards are conditional statements which are evaluated based on data

received from any one or more of the streams or state variables. In the instance where the

execution guard condition is not satisfied, the operator does not execute, but the data

present on the streams is still consumed.

g. State Variables

State variables are important for ensuring the CAPS graph of the

prototyped system is a directed acyclic graph (DAG), as any cycle will prevent the static

scheduler in CAPS from finding a feasible schedule. This mandates there be no possible

cycles, intentional or otherwise. If such a cycle is present, a state variable can be declared

in the editor, using the same name as one of the streams associated with the cycle. CAPS

then considers the cycle broken, essentially removing the stream from the graph for

scheduling purposes.

B. ASSUMPTIONS

The development of Channel CAT required a clear understanding of the USMC

TRI-TAC network system and knowledge of which aspects of the TRI-TAC system are

14

pertinent to client-server software design. One of the most clarifying assumptions the

author made was to recognize the independence of format and content from channel

throughput. Such a decision is not totally realistic, as certain data associated with certain

applications may produce better or worse throughput. The assumption of performance

independence from format and content was made to provide a more pure measurement of

channel performance by ignoring any enhancements or faults in the actual software

applications and to maintain the focus of Channel CAT on the physical layer of the

TRI-TAC network.

TDM links mandate a fixed maximum packet size. This activity was not modeled.

The disassembly and reassembly of packets can clearly be seen as having no significant

effect on the actual movement of data elements over a channel, particularly when the

limiting factor in channel performance is the channel's data rate.

The final choice which was made was to model the TRI-TAC channel in a simplex

mode only. Channel CAT's goal is to provide a tool for measuring the ability of a

TRI-TAC channel to push a certain data size, at a certain period, at a certain speed. The

activities associated with duplex channel operations are heavily dependent on the behavior

of the parent software applications and are, for this reason, ignored in Channel CAT.

C. SYSTEM DECOMPOSITION

This section details the elements of an actual TRI-TAC TDM channel which were

incorporated into Channel CAT. This is not meant to be an inclusive description of TDM,

but it meant to give perspective on certain important elements within the TRI-TAC

15

network and how they were translated into actual implementation within CAPS.

1. Parameters

a. Constant

As discussed earlier, the maximum channel speed of a TRI-TAC channel is

standardized at 32,000 bps, but this has also been shown to be an upper limit which is

rarely achieved. In Channel CAT, the user may set the channel speed from 1 to 4000

bytes per second (32,000 bits per second).

The granularity of Channel CAT is focused toward providing a usable

interface. In support of such an aim, the manipulation of the modeled channel occurs at

250 ms intervals. Greater precision is possible, but the author contends more precision

does not enhance the value of Channel CAT to the user.

b. Run Time

As discussed in Chapter 1, the parameters which the author incorporated

into Channel CAT are the data size, the period at which the data is transmitted to the

channel, the distance of the link, and the rate at which the data is physically transmitted

across the channel.

The distance between nodes factor was deleted from the final version of

Channel CAT because of its relative insignificance. In the channel being used to

communicate 1000 bytes of information/data every second, with the channel running at

4000 bytes per second, the entire data portion can be handled in 250 milliseconds. If we

further suppose the physical speed of the transmission medium is 2/3 the speed of light

16

(200000 kilometers per second) the relatively small impact of internodal distance is

apparent. Sending the 1000 bytes over a 2 kilometer distance introduces an additional

delay of .01 milliseconds, resulting in a total transmission time of 250.01 milliseconds.

Sending the same data over a distance of 200 kilometers, the delay incurred is only 1

millisecond and the total transmissiontime is now 251 milliseconds. Because the relative

increase in these two cases is only .0004% and .004% of the original total time, the

distance factor was deemed unimportant and was not incorporated into the final version.

Figure 2 is the top-level PSDL decomposition of Channel CAT. Two ,operators

USERINTERFACE AND TRITACLINK, and five streams, DATARATE,

DATAPERIOD, DATASIZE, STARTSTOP, and UTILIZATION, are shown in the

graph.

2. User Interface

The user interface was divided into two windows, an interactive input panel and a

results panel. The results panel is not interactive, merely providing the user the ability to

monitor the modeled channel.

a. Input Panel

The user-interface operator is not decomposed any further within the

CAPS graphical editor. The implementation of user-interface is accomplished using

TAE+ version 5.3, which is integrated into CAPS. The Ada code used to generate the

user interface is included as Appendix C. The author chose to implement a two panel

(window) interface. The first panel , Figure 3, is used strictly for input of parameters and

17

S~0

/SIM

CL

•MJ

Figure 2. Top-level PSDL Graph of Channel CAT

18

,2

E 4

Figure< 3.CanlCT nu ae

194

for starting and stopping the operation of the channel. Figure 3 is a screen capture of

Channel CAT's input panel during execution. As can be seen in Figure 3, the user has set

the channel parameters to a data size of 1,578 bytes, a period of transmission of 3

seconds, and a channel speed of 707 bytes per second. The acceptable range of value for

each parameter is shown in Table 1. The user of Channel CAT is allowed to modify the

Minimum accepted value Maximum accepted value

Data size 1 byte 250,000 bytes

Data period 1 second 1800 seconds

Channel (link) rate 1 byte per second 4000 bytes per second

Table 1. Range of Acceptable Values for Channel CAT Input Panel Parameters

values for the parameters at any time, even during run-time of the prototype. When the

prototype is initially loaded, all parameters are set to their minimum value and the

prototype is in the paused mode. The prototype is toggled between the running mode and

the paused mode by the use of the 'Start/Stop' button located at the bottom of the input

panel. This button passes a boolean value to the prototype, which causes most of the

operators to cease execution. These operators have been given an execution guard which

checks this boolean value at the beginning of every attempted execution. Lines 275 and

421 of Appendix B are the associated execution guards (execution trigger condition

checks) for the RCVR and XMTR operators.

20

b. Results Panel

The second panel of the user interface is the results panel shown in Figure

4. This particular panel is completely non-interactive with the user. The major

functionality of the results panel is supplied by a Dynamic Data Object called a stripchart.

Similar in general behavior to medical devices used to measure heart activity, the results

graph's horizontal axis is a 30 second segment of time and its vertical axis is the

percentage of the maximum channel capacity used. The current value is displayed

numerically in the right hand comer and graphically at the rightmost edge of the graph.

Three colors are used to draw the utilization graph: green for values below 75 %, yellow

for values from 75 to 99 %, and red to draw the graph for all values of 100 % or greater.

These colors are used in a manner analogous to traffic signals. The results panel continues

to display a value if the prototype is stopped by the user. The resulting graph will simply

be a horizontal line beginning at the last value supplied and will continue to display this

value until the prototype is either selected to run by the user or the user exits Channel

CAT. The effect of continued display of the last valid value on the results graph is

intentional and reflects the internal state of Channel CAT when the user pauses Channel

CAT. All internal values are maintained in their most recent state prior to pause being

selected by the user, so the display of the last valid value for UTILIZATION during pause

is considered by the author to be appropriate.

21

caa

eo

-- -- --- -- --- -- -- -- --- ---- -- --- -- --- -- --- -- --- -- --- ---- -- --- -- -- -- --- -- -

--- -- -- ----- ------ -- ---------- ----- ---- ----- ---- ---- ----- -- -----

--- -------- ---- -------- ----- --------- ----------------- -----------

-- -- -- -- -- -- --- ---- -- -- --- -- --i -- --- -- -- -- -- -- -- -

Figure 4. Channel CAT Results Panel

22

3. TRI-TAC Link Operators

The tritaclink operator was decomposed initially into three abstract entities: a

transmitter, a receiver, and a medium over which to communicate, as shown in Figure 5.

1- PATH
2- SENDER
3 - RECEIVER

Figure 5. Results of Assumptions

Format, content, intemodal distance, and type of medium were relatively insignificant and

can be ignored for modelling purposesSuch abstraction of a TRI-TAC link strongly

supports the application independence desired by the author. With this simple three entity

model, the link has been trimmed down to the essential elements for measuring channel

23

capacity. A fourth operator was added to handle simple results formatting. The

functionality of this operator is not time critical.

Figure 6 is the concept drawing for the behavior of the transmitter (SENDER), the

receiver (RECEIVER), and the channel (IN/OUT BOX). The IN/OUT BOX is the

abstracted channel. At appropriate times as set by the user, the SENDER places the set

amount of data in the box. The receipt of the data is accomplished by the RECEIVER at

a pre-determined interval. The RECEIVER takes all or a portion of the contents of the

channel, depending on the network data rate, and discards the data as shown in Figure 6.

I N/OUT BOX •

Figure 6. Concept Drawing

This analogy is accurate due to the earlier assumption that the format and content of the

data are independent of the performance of the physical layer of a TRI-TAC channel and

the data can be simply consumed or discarded by the RECEIVER. This abstraction of a

24

channel on a TRI-TAC link is the concept for implementation of the atomic CAPS

operators XMTR, RCVR, and CHANNELBUFFER. The fourth atomic operator of the

composite operator TRITACLINK is called UTILIZATIONCALCULATOR. As

previously mentioned, there was a need to format the results of the modeled channel and

UTILIZATIONCALCULATOR fulfills this need. Figure 7 is the PSDL graph of the

decomposed TRITACLINK operator into the four atomic operators.

a. Transmitter

Lines 748 through 813 of Appendix B is the Ada code for the atomic

implementation of XMTR. Five parameters are involved with XMTR. Three of the

parameters, DATAPERIOD, DATASIZE, PERIOD, and STARTSTOP, are 'in' mode

parameters. The PERIODCOUNTER parameter is an 'in out' mode parameter. Finally,

BUFFERMODIFICATION is an 'out' parameter.

XMTR was assigned a period of 1000 milliseconds during design. This

was necessary so that XMTR would be statically scheduled by CAPS, ensuring execution

priority. The conceptual design of Channel CAT allows for the user to manipulate the

period at which data is sent to the channel. The necessity of assigning a period to XMTR

runs counter to this design consideration. A method was needed to control the execution

of XMTR to take of advantage of the XMTR operator having priority by being statically

scheduled, but ensure the XMTR operator executes at the period desired by the user. A

state variable, PERIODCOUNTER, was introduced during design to control the

execution of XMTR. Lines 71 and 74 of Appendix A show the PERIODCOUNTER

25

mx

m a
xx

CL co

CL'

3l

mx

3

Figure~~ ~ ~ 7.PD rp fTIA-IKOeao

26=

stream declared as a state variable and initialized to a value of 0. Lines 793 through 812 is

the body of the XMTR procedure. Line 800 shows the first instruction executed is to

increment PERIODCOUNTER. Line 806 then performs a condition check to compare

the values of PERIODCOUNTER and DATAPERIOD. If the values are equal, XMTR

assigned the value of DATASIZE to BUFFERMODIFICATION. If the condition fails,

BUFFERMODIFICATION is given a value of 0. The analogy for this execution control

is found in the familiar ticketing system used at bakeries and barber shops. Every

customer takes a number upon entering the business (DATAPERIOD). The customer is

then forced to wait for service until their number matches the number displayed on the

sign in the business (PERIODCOUNTER).

As can be seen in Figure 7, the stream BUFFERMODIFICATION

appears twice, drawn from XMTR and RCVR operators to the CHANNELBUFFER

operator. The BUFFERMODIFICATION data values supplied by XMTR are always

positive.

b. Receiver

Lines 635 through 687 of Appendix B is the Ada code for the atomic

implementation of the RCVR operator. RCVR has three parameters. DATARATE and

STARTSTOP are 'in' mode parameters. BUFFERMODIFICATION is an 'out'

parameter.

The RCVR procedure body is shown in lines 670 through 687. Two local

variables are declared initially, ops_per second and amountper_500_ms. The RCVR

27

operator has a period of 500 milliseconds. A decision on the level of granularity was

necessary as it is impractical to implement the RCVR operator in such a manner that it

removes a single byte during every execution. Such behavior is not only unattainable

within CAPS, it is also not discernible by the user. A period of 500 milliseconds was

chosen through a series of trials, satisfying the desired granularity of less than 1000

milliseconds for the RCVR operator. Data can be sent to the channel at a period of no

less than 1000 milliseconds, so it was necessary to implement a RCVR period of less than

1000 milliseconds as a means of capturing the behavior of the channel at this lower bound.

Three different values for the RCVR's period were tested. The first value, 100

milliseconds, led to numerous timing errors and caused the results panel's graph to have

gaps. A period of 250 milliseconds was tested and was found to alleviate the timing

errors, which also improved the quality of the results graph. 500 milliseconds was tested

and was found to eliminate nearly all timing errors and yielded a very smooth behavior on

the results graph.

When RCVR executes every 500 milliseconds, the DATARATE value is

compared to a value of 2. If greater than 2, lines 680 and 681 assign amountper 500_ms

the appropriate value based on the DATARATE and opsper-second.

BUFFERMODIFICATION is then assigned the negative value of amountper 500_ms.

If DATARATE was equal or less than 2, BUFFERMODIFICATION is assigned the

minimum possible value of -1 byte. This operation was found necessary as the integer

rounding which occurs in line 680 and 681 was yielding a value of 0 for DATARATE

28

values less 2.

The RCVR procedure always generates a negative value for the

BUFFERMODIFICATION parameter.

c. Channel

CHANNELBUFFER is the portion of Channel CAT which models the

physical TRI-TAC connection. Lines 584 through 634 in Appendix B contains the Ada

code for the implementation of CHANNELBUFFER. The CHANNELBUFFER

procedure has three parameters. BUFFERMODIFICATION and STARTSTOP are

both 'in' parameters. BUFFERSIZE is an 'in out' parameter.

Lines 619 through 634 of Appendix B is the procedure body of

CHANNELBUFFER. The normal execution of CHANNELBUFFER can be seen in

line 626, where BUFFERMODIFICATION is added to BUFFERSIZE. It is at this

point that the rationale for using positive and negative values for XMTR and RCVR,

respectively, can be seen most clearly. It is intuitively obvious that any transmission

medium can be in one of two states, either empty or containing data.

CHANNELBUFFER achieves these two states by either having a value of 0 or greater

for BUFFERSIZE. After the BUFFERMODIFICATION value is applied to

BUFFERSIZE, BUFFERSIZE is checked for a negative value. If a negative value is

encountered, BUFFERSIZE is assigned a value of 0. This operation is done to avoid

having a channel which is less than empty, a concept that is not possible.

An exception is included in line 630 through 632. This is to prevent integer

29

overflow of BUFFERSIZE. If such an exception occurs, BUFFERSIZE is assigned the

largest possible integer value, MaxInt.

dL Utilization Calculator

The fourth atomic operator in TRITACLINK is

UTILIZATIONCALCULATOR. Lines 688 through 747 contains the Ada code for the

implementation for UTILIZATIONCALCULATOR. Five parameters are supplied

UTILIZATIONCALCULATOR. BUFFERSIZE, DATAPERIOD, DATARATE,

AND STARTSTOP are all 'in' mode parameters. UTILIZATION is an 'out' mode

parameter.

This procedure is responsible for formatting the results, as a percentage of

maximum capacity, for display. A local variable, buffer_maximum, is declared and

initialized by multiplying DATARATE AND DATAPERIOD, as shown in line 738 of

Appendix B. This yields a value which represents the maximum number of bytes the

channel can accept every DATAPERIOD at the set DATARATE. UTILIZATION is

calculated by doing casted float division of BUFFERSIZE by buffer maximum,

multiplied by 100, and then casted to an integer. UTILIZATION is providedas an integer

value to avoid unnecessary detail being provided to the user. It is conceded that there are

circumstances where this decision may give the user results which are not completely

accurate, such as rounding 99.6% to 100%. Improvements to the display accuracy are

topics for future work on Channel CAT.

UTILIZATIONCALCULATOR also contains statements which provide

30

the user text-based results. These results are displayed within the prototype's shell

window.

D. OPERATION

Channel CAT can be invoked by either calling the executable image

(channelcat.exe) or by using the CAPS interface. If the CAPS interface is used, a new

shell window is opened, otherwise the terminal used to execute Channel CAT will be

provided all the text-based messages during execution.

1. User Input

Channel CAT starts in the paused mode. The user may select Channel CAT to run

immediately, but will do so with the default value of 1 byte at a period of 1 second with a

rate of 1 byte per second. More typically, the user will set DATASIZE,

DATAPERIOD, and DATARATE prior to selecting Channel CAT to run. As

mentioned previously, the user is allowed to alter the parameters while Channel CAT is

running.

2. Results

The value of UTILIZATION is provided not only to the results panel, but also the

shell window.

a. Text-based

Once the user selects Channel CAT to run, the shell window will be

provided a single text line on every execution of UTILIZATIONCALCULATOR. The

value which is written to the shell window is the same value which is sent to

31

USERINTERFACE.

b. Graphic-based

When UTILIZATIONCALCULATOR executes, UTILIZATION is sent

to the results panel, specifically to the 'graph' item as shown in lines 316 through 320 of

Appendix C. This value is then provided to the stripchart. The numeric value is displayed

in the upper right comer of the stripchart and is also graphically plotted on the right most

edge.

The resulting graphs yielded by Channel CAT are saw-toothed graphs.

The peak of the graph indicates those points in time when the XMTR has completed full

execution and added data to the channel. The decrease in the value displayed on the graph

is caused by the incremental reduction of BUFFER-SIZE by the RCVR operator. This

tracks the progress of the receipt of data and gives an indication of how much data

remains to be received.

E. CHAPTER SUMMARY

The simple, clean design of Channel CAT is mostly attributable to the amount of

abstraction involved. The tool is user-oriented, with several decisions being determined

solely by analyzing how to provide a user with as much capability as necessary without

requiring the same user to be an expert on TRI-TAC networks.

The two panel user interface, implemented in TAE+, is uncluttered and simple to

use. The user is automatically provided two methods in the results panel for monitoring

the modeled channel.

32

The TRI-TAC channel itself has been abstracted. The design concept of using an

IN/OUT box to model a channel, with a transmitter adding data and a receiver removing

data, was successfully implemented in the decomposed operator TRITACLINK.

The use of CAPS in the actual design of the Channel CAT executable was

invaluable. The ability of CAPS to enforce real-time scheduling and its ability to allow a

designer to rapidly create a good user interface allowed the author to complete the design

phase of Channel CAT in a smooth manner.

33

34

IV. TESTING AND VALIDATION

A. TESTING

The author established the need to test and validate Channel CAT after

consideration of the amount of abstraction which was involved during design. A test

phase needed to be completed to illustrate the fidelity of the tool.

1. Plan

The author chose to focus solely on the accuracy of Channel CAT and not address

interface issues. Two basic categories were targeted for the testing of Channel CAT. The

first category focused on those situations where the parameters should yield a predictable

results. The second category focused on setting the parameters at known values,

establishing a control set, and then varying each parameter to measure the impact of

parameter adjustment by the user.

2. Criteria

Appendix D contains the criteria the author established for the tests. The criteria is

documented in the form of parameters values and the expected results. The criteria is

broken into three sets of test cases. Sets 1 and 2 constitute the test cases which focus on

predictable results. Set 3 contains the test cases which measure the impact of changing

input parameter values by the user.

B. RESULTS

Appendix D contains the results of the tests. The author leaves the case-by-case

inspection of the results to the reader. A summary of conclusions resulting from the tests

35

follows.

1. Accuracy

The author was primarily concerned that Channel CAT executed in a predictable

manner and yielded results under known conditions which were expected. Channel CAT

was found to produce predictable results. There were no variations from the expected

results for all the test cases in the expected results category (Sets 1 and 2).

2. Boundary Conditions

As with any system, it is prudent to verify execution at boundary conditions. In

the tests run, this involved Channel CAT being run at 100% utilization. In the three cases

tested (Set 1), Channel CAT performed as expected and without deviation.

3. Fidelity

The test cases which focused on the impact of input parameter changes (Set 3) are

the most interesting. The conduct of the tests required run-time manipulation of the

parameters. The impact of parameter changes cannot be summarized as simply small or

large, but need to be qualified for each parameter.

Changing the value of the size of data yielded different results, depending on

whether a byte was added or it was subtracted from the input value. Adding a single byte

to the overall size of the data caused the utilization to increase, but the change was not

visible until after 5 transmission periods. This is due to the integer rounding which occurs

in line 741 of Appendix B. It was determined that decimal values of .4 and below are

rounded down (floor function) and decimal values of .5 or above are rounded up (ceiling

36

function). Subtracting a byte from the data size did not yield any change to utilization.

This condition was left in place for 5 minutes with no impact seen. This is because a

change of a single byte from the control conditions was not significant enough to impact

the calculation of utilization. The lack of discernible change was again attributed to the

integer rounding mentioned above. The author did continue to subtract a single byte until

the change impacted the displayed utilization. The data size had to be decreased to 994

bytes to yield a change.

Changing the period at which data is sent over the channel by single second

immediately impacted the displayed utilization. This change was present when one second

was added and when it was subtracted. The change was not only immediately visible, but

was significantly large. As a measure, subtracting a single second from the data period

caused the utilization to grow by 11%.

The final parameter which was changed was the data rate. Adding and subtracting

a single byte per second to the control conditions yielded changes in the utilization

immediately. The changes, however, were not as large as the changes realized from

changing the data period.

It is important to note the above conclusions are based completely on what is

displayed to the user. The lack of discernible change in the utilization is not due to a

software fault. As discussed in the previous chapter, the author chose to provide the

results in a form which causes integer rounding and can therefor provide utilization values

not fully indicative of the internal values of Channel CAT.

37

C. CHAPTER SUMMARY

The testing of Channel CAT was completed by the author. The testing and

validation of Channel CAT focused on accuracy, boundary condition behavior, and fidelity

to expected actual values. No measurements of usability of the interface were conducted.

The results of the test and validation are considered by the author to be positive.

The tests for known actual results were successful and no deviations were noted. The

fidelity of the test results to known actual results is important since it was the author's

intent to design a tool which accurately modeled the b6havior of a TRI-TAC link. The

lack or delay of changes to the utilization when making small changes to the size of the

data is an area which has been identified, but is also an explainable behavior.

38

V. CONCLUSIONS

A. STRENGTHS OF CHANNEL CAT

Channel CAT's user interface is simple and intuitive. The input panel contains

explanatory labels which let the user know what parameters are available. The

manipulation of the parameters is through the use of a mouse, which does not require a

particular typing skill level. The presence of a button to start and pause Channel CAT is a

feature which is conceptually familiar to users.

The results displayed by Channel CAT are formatted and shown on a stripchart

graph. Such a graph is familiar to most people, having seen such graphs used in school

classes, medical facilities, polygraphs, and seismographs. The results are also displayed

numerically, which provides a more precise reading of the utilization.

The use of CAPS for designing Channel CAT provided a robust executable that

performs time-critical operations predictably. The assurance of real-time behavior should

be considered a major strength of Channel CAT. As the modem battlefield commander

becomes more reliant on the advantages of real-time information, greater importance is

placed on the development of network software systems. Through the use of an

automated tool which accurately models the real-time behavior of TRI-TAC links, better

design decisions can be reached earlier in the development cycle.

Finally, the development of Channel CAT within CAPS is an investment in future

work and extension. The same aspects of CAPS which were found so vital in the design

of Channel CAT can be leveraged for future work efforts.

39

B. FUTURE WORK

No software tool ever meets all users' needs and very rarely survives any length of

time without needing enhanced functionality. These are recognized facts by the author

and there is an expectation that Channel CAT will be the subject of future work efforts.

The author has identified three significant areas for future work.

The assumptions made early in the design of Channel CAT not to include the

transmission delays caused by the distance of the link should be considered for future

work. As the use of satellite systems becomes more commonplace and permeates further

down towards routine use by smaller military units, the delay incurred from satellite use

will become a factor which must be considered. This factor could be handled by simply

modifying the input parameters to include a distance parameter, but this is placing the user

in the position of knowing the orbiting height of military satellites and forces them to

correctly input such values. Ideally, the input panel would need to be redesigned to

include a series of items which allow the user to select whether satellites are being used,

how many satellites are being used, which satellites are being used, and the distance of link

that is terrestrial based (not satellites).

Channel CAT currently provides utilization results in an integer format. The

transition of Channel CAT to a more accurate display mode is also a strong candidate for

future work. As the TRI-TAC links become more heavily used, integer rounding errors

may be viewed as undesirable. The UTILIZATIONCALCULATOR would need to be

modified and some modification would be necessary to the PSDL design. Such changes

40

are not sweeping and were not implemented in Channel CAT based on a design decision

to allow initial design and implementation of Channel CAT as a rapid prototype.

The most promising and most interesting topic for future work is extension to

multiple processes sharing the transmission path. Channel CAT currently provides the

user the ability to model a single channel being used by two terminal devices to send and

receive data. This models only a single process, which is not entirely realistic. Channel

CAT needs to be extended so that the user has the ability to set a certain data rate and

then provide a data size and period for several processes. This would simulate a

server-to-server connection. Individual processes on servers normally do not have

dedicated channels and are forced to share a transmission path. The usefulness of Channel

CAT will be increased dramatically by providing functionality and interfaces for modeling

several processes utilizing a single channel. The resulting graphs will certainly be more

engaging than those achieved in Channel CAT's current state.

Ranking the above topics in order of importance, the inclusion of multiple

processes is most important. Integrating the delay caused by distance, particularly from

satellites, is the next priority. The third most important topic would be to modify the

display of utilization from integer format to floating point format.

41

42

REFERENCES

[BERZ91] Berzins, V., Luqi, Software Engineering with Abstractions,
Addison-Wesley Publishing Company, 1991.

[ELMA93] Elmasri, R., Navathe, S.B., Fundamentals of DatabaseSystems,
2nd ed., Benjamin/Cummings Publishing Company, Inc., 1993.

[LUQI97] Luqi, Class Notes for CS4920, Naval Postgraduate School, January
1997.

[MAIN91] Maintenance Manual, AN/MRC-142, TM-095430-30, United
States Marine Corps, 1991.

[MAWT95] Marine Air Command and Control System (MACCS) Reference
Guide, MAWTS-1 C3 Department, 1995.

43

44

BIBLIOGRAPHY

Barnes, J., Programming in Ada 95, Addison-Wesley, 1996.

Berzins, V., Luqi, "Semantics of a Real-Time Language," paper presented at the
Real-Time Systems Symposium, Huntsville, Alabama 6-8 December 1988.

Booch, G., Bryan, D., Software Engineering with Ada, 3d ed, Benjamin/Cummings, Inc.,
1994.

Feldman, M.B., Koffinan, E.B., Ada 95 Problem Solving and Program Design, 2d ed,
Addison-Wesley, 1996.

Hennessy, J.L., Patterson, D.A., Computer Architecture, A Quantitative Approach, 2d ed,
Morgan Kaufinann, Inc., 1996.

Luqi, Berzins, V., Yeh, R.T., "A Prototyping Language for Real-Time Software," IEEE
Transactions on Software Engineering, v. 14, no. 10, October 1988.

Luqi, Berzins, V., "Execution of a High Level Real-Time Language," paper presented at
the Real-Time Systems Symposium, Huntsville, Alabama 6-8 December 1988.

Luqi, "Handling Timing Constraints in Rapid Prototyping," paper presented at the Hawaii
International Conference on System Science, 22nd Kailua-Kona, Hawaii 3-6 January
1989.

Luqi, Shing, M., "Real-Time Scheduling for Software Prototyping," Journal of Systems
Integration, v. 6, 1996.

Luqi, "The Role of Prototyping Languages in CASE," International Journal of Software
Engineering and Knowledge Engineering, v. 1, no. 2, 1991.

Rumbaugh, J., and others, Object-Oriented Modeling and Design, Prentice-Hall, Inc.,
1991.

Tanenbaum, A.S., Computer Networks, 3d ed, Prentice-Hall, Inc., 1996.

45

46

APPENDIX A. PSDL SOURCE CODE

1 OPERATOR channel-buffer

2 SPECIFICATION

3 INPUT

4 buffer_modification : INTEGER,

5 buffersize INTEGER,

6 startstop BOOLEAN

7 OUTPUT

8 buffersize INTEGER

9 END

10 IMPLEMENTATION ADA channel-buffer

11 END

12 OPERATOR channel-cat

13 SPECIFICATION

14 STATES

15 datarate : INTEGER,

16 data-period : INTEGER,

17 datasize INTEGER,

18 startstop BOOLEAN

19 INITIALLY

20 1,

21 1,

22 1,

23 FALSE

24 END

25 IMPLEMENTATION

26 GRAPH

27 VERTEX tritac-link

28 VERTEX user-interface 200 MS

29 EDGE data-period

30 userinterface ->

31 tritac-link

32 EDGE datarate

33 userinterface ->

34 tritac-link

35 EDGE data-size

36 userinterface ->

37 tritac-link

38 EDGE start-stop

39 user_interface ->

40 tritac-link

41 EDGE utilization

42 tritac-link ->

43 userinterface

44 DATA STREAM

45 utilization : INTEGER

46 CONTROL CONSTRAINTS

47 OPERATOR tritac-link

47

48 OPERATOR user.interface

49 END

50 OPERATOR rcvr

51 SPECIFICATION

52 INPUT

53 data-rate : INTEGER,

54 start-stop : BOOLEAN

55 OUTPUT
56 buffer-modification INTEGER

57 MAXIMUM EXECUTION TIME 50 MS
58 END

59 IMPLEMENTATION ADA rcvr

60 END

61 OPERATOR tritacjlink

62 SPECIFICATION

63 INPUT
64 data-period : INTEGER,

65 data-rate INTEGER,
66 datasize INTEGER,

67 startstop BOOLEAN
68 OUTPUT

69 utilization : INTEGER
70 STATES
71 period-counter : INTEGER,
72 buffer-size : INTEGER
73 INITIALLY

74 0,
75 0
76 END

77 IMPLEMENTATION

78 GRAPH

79 VERTEX channelbuffer

80 VERTEX rcvr : 50 MS

81 VERTEX utilization_calculator

82 VERTEX xmtr : 50 MS

83 EDGE buffer-modification

84 xmtr ->
85 channel-buffer

86 EDGE buffer-modification

87 rcvr ->

88 channel-buffer

89 EDGE buffer-size
90 channel-buffer ->

91 utilization-calculator

92 EDGE buffersize
93 channel_buffer ->

94 channelbuffer

95 EDGE data-period

48

96 EXTERNAL ->

97 xmtr

98 EDGE data-period
99 EXTERNAL ->

100 utilizationcalculator

101 EDGE datarate
102 EXTERNAL ->
103 utilizationcalculator

104 EDGE datarate
105 EXTERNAL ->

106 rcvr

107 EDGE data-size
108 EXTERNAL ->

109 xmtr

110 EDGE periodcounter
il xmtr ->

112 xmtr

113 EDGE startstop
114 EXTERNAL ->
115 channel-buffer

116 EDGE startstop
117 EXTERNAL ->

.118 rcvr

119 EDGE start-stop
120 EXTERNAL ->
121 xmtr

122 EDGE startstop
123 EXTERNAL ->
124 utilizationcalculator

125 EDGE utilization
126 utilizationcalculator ->
127 EXTERNAL
128 DATA STREAM
129 buffer-modification : INTEGER
130 CONTROL CONSTRAINTS
131 OPERATOR channelJbuffer
132 TRIGGERED BY SOME
133 buffer-modification
134 PERIOD 500 MS

135 OPERATOR rcvr
136 TRIGGERED IF
137 start-stop
138 PERIOD 500 MS

139 OPERATOR utilization_calculator
140 TRIGGERED BY SOME
141 buffer-size

49

142 OPERATOR xmtr

143 TRIGGERED IF

144 start-stop

145 PERIOD 1000 MS

146 END

147 OPERATOR user-interface

148 SPECIFICATION

149 INPUT

150 utilization INTEGER

151 OUTPUT

152 dataperiod INTEGER,
153 data-rate INTEGER,

154 data-size INTEGER,

155 start-stop BOOLEAN

156 MAXIMUM EXECUTION TIME 200 MS

157 END
158 IMPLEMENTATION ADA userinterface

159 END

160 OPERATOR utilizationcalculator

161 SPECIFICATION

162 INPUT
163 buffersize INTEGER,
164 data-period INTEGER,
165 data-rate INTEGER,
166 start-stop BOOLEAN

167 OUTPUT

168 utilization INTEGER
169 END
170 IMPLEMENTATION ADA utilization calculator

171 END

172 OPERATOR xmtr

173 SPECIFICATION

174 INPUT

175 data-period INTEGER,

176 data size : INTEGER,
177 period-counter : INTEGER,
178 start-stop : BOOLEAN

179 OUTPUT

180 buffer-modification : INTEGER,
181 period_counter : INTEGER
182 MAXIMUM EXECUTION TIME 50 MS

183 END

184 IMPLEMENTATION ADA xmtr

185 END

50

APPENDIX B. ADA SOURCE CODE

1 package CHANNEk.CATEXCEPTIONS is

2 -- PSDL exception type declaration

3 type PSDLEXCEPTION is (IBWDECLARED-Afl&EXCEPTION);

4 end CHANNELCAT_2XCEPTIONS;

5 package CHANNEL-CAT-JNSTANTIATIONS is

6 -- Ada Generic package instantiations

7 end CEANNELCATI.NSTANTIATIONS;

8 with PSDL-TIMERS;

9 package CHANNELSCATSIHERS is

10 -- Timer instantiations

11 end CHANNEL,_CAT-TIMERS;

12 -- with/use clauses for atomic type packages
13 -- with/use clauses for generated packages.

14 with CHANNELSCATRXCEPTIONS; use CHANELSCATEXCEPTIONS;

15 with CHANNELSCATINSTANTIATIONS; use CHANNELS-ATINSTANTIATIONS;

16 -- with/use clauses for CAPS library packages.

17 with PSDLSTPYEAMS; use PSDLSTREAM4S;

18 package CHAN'NELCATSTREAMS is

19 -- Local stream instantiations

20 package DS-UTILIZATIODLUSERJNTERFACE is new

21 PSDL..STREAM4S. SAMPLED-BUFFER (INTEGER);

22 package DS.YUFFERJ(ODIFICATIONSCHANNELBUFPER is new

23 PSDL-STREAM4S.SAHPLED-BUFFER (INTEGER);

24 -- State stream instantiations

25 package DS-DATASRATEJITILIZATIONLCALCULATOR is new

26 PSDL-STREAMS . STATEJTARIABLE (INTEGER, 1);

27 package DSJDATA-RATE-RCVR is new

28 PSDL-STREAMS.-STATEVARIABLE (INTEGER, 1);

29 package DS-.JATA-PERIODý_XMTR is new

30 PSDL-STREAMS. STATE-VARIABLE (INTEGER, 1);

31 package DS-DAT&-PERIOD_UTILIZATIONSCALCULATOR is new
32 PSDL-.STREAMS.STATEVARIABLE (INTEGER, 1);

33 package DSJJATASIZE9D4TR is new

34 PSDL..$TREAMS. STATE-VARIABLE (INTEGER, 1);

35 package DS-START-STOP.JcNTR is new

36 PSDI-STREAMS.STATEVARIABLE(BOOLEAN, false);

37 package DSSTART-STOPJJUTILIZATIONCALCULATOR is new

38 PSDQ$STREAMS.STATEVARIABLE (BOOLEAN, false);

39 package DS-STARTh-STOP-RCVR is new

40 PSDL-STREAMS. STATEVARIABLE (BOOLEAN, false);

51

41 package DSSTART-STOPCHANNELBUFFER is new

42 PSDL-STREAMS. STATE-VARIABLE (BOOLEAN, false);

43 package DS-PERIOD-COUNTERXMTR is new

44 PSDk..STREAI4S.-STATE-VARIABLE (INTEGER, 0);

45 package DS_-BUFFERSIZECEANNELBUFFER is new
46 PSDL-STREAMS. STATE- VARIABLE (INTEGER, 0);

47 package DSBUFFERSIZE-UTILIZATIONCALCULATOR is new

48 PSDL-STREAMS. STATE-VARIABLE (INTEGER, 0);

49 end CHANNELCATSTREAMS;

50 package CHM NELCATDRIVERS is

51 procedure USERINTERFACEDRIVER;

52 procedure CHANNEL_BtJFFERDRIVER;

53 procedure RCVRDRIVER;

54 procedure UTILIZATIONCALCULATORDRIVER;

55 procedure XMTR-DRIVER;

56 end CHANNELCATDRIVERS;

57 -- with/use clauses for atomic components.

58 with CHANNELBUFFER_.PKG; use CHANNEL..BUFFER.PKG;

59 with RCVRPKG; use RCVFLPKG;
60 with USERINTERFACEPKG; use USER..INTERFACE-PKG;
61 with UTILIZATION_.CALCULATORPKG; use UTILIZATION..CALCULATORPKG;

62 with XMTRPKG; use XMTRPKG;
63 -- with/use clauses for generated packages.

64 with CHANNEL_ CATEXCEPTIONS; use CHANNELCAT-EXCEPTIONS;
65 with CHANNELCATSTREAMS; use CHANNELCATSTREAI4S;
66 with CHANNELCATTIMERS; use CHANNELCATTIMER.S;
67 with CHANNELCATINSTANTIATIONS; use CHANNELCAT _INSTANTIATIONS;
68 -- with/use clauses for CAPS library packages.

69 with DS-DEBUG-PKG; use DS-DEBUGýPKG;

70 with PSDLSTREAYS; use PSDLSTREAMS;

71 with PSDLTIMERS;

72 package body CHANNEL-CAT-DRIVERS is

73 procedure USERINTERFACEDRIVER is

74 LVJJTILIZATION INTEGER;

75 LV..DATA.PERIOD INTEGER;

76 LV-DATA-RATE INTEGER;
77 LV-DATASIZE INTEGER;

78 LV..STARTSTOP BOOLEAN;

79 EXCEPTION-HAS-OCCURRED: BOOLEAN =FALSE;

80 EXCEPTION _ID: PSDLEXCEPTION;

81 begin

82 -- Data trigger. checks.

83 -- Data stream reads.

84 begin

85 D5.UTILIZATION_-USER..INTERFACE .BUFFER. READ (LV..UTILIZATION);
86 exception

87 when BUFFER-UNDERFLOW =>
88 DS-DEBUG .BUFFER-.UNDERFLOW ("UTILIZATION-USERPjtNTERFACE", 'USER-INTERFACE ');
89 end;

52

90 -- Execution trigger condition check.

91 if True then

92 begin

93 USER-INTERFACE(

94 UTILIZATION => LVJJTILIZATION,

95 DATA-.PERIOD => LV__DATA_PERIOD,

96 DATA_,RATE => LVDATA-RATE,

97 DATA-SIZE => LV..DATA..SIZE,

98 START-STOP => LV-START-STOP);

99 exception

100 when others =>
101 DSDEBUG.UNDECLARED-EXCEPTION C USERINTERFACE");

102 EXCEPTION.JIASOCCURRED := true;

103 EXCEPTIONID := UNDECLAREDADAEXCEPTION;

104 end;

105 else return;

106 end if;

107 -- Exception Constraint translations.

108 -- other constraint option translations.

109 --Unconditional output translations.

110 if not EXCEPTIONHAS..OCCURRED then

ill begin

112 DS-DATA-PERIOD-XMTR. BUFFER. WRITE (LV-DATA-PERIOD);

113 exception

114 when BUFFER-OVERFLOW =>

115 DS-DEBUG.BUFFER-OVERFLOW(nDATA-PERIODXMTfRnI nUSER.INTERFACEn);

116 end;

117 begin

118 DS-PATA-PERIODUJTILIZATION-CALCULATOR. BUFFER. WRITE (LVDATAPERIOD);

119 exception

120 when BUFFER_.OVERFLOW =>
121 DS-DEBUG.BUFFER-OVERFLOW(C DATA-PERIOD-UTILIZATION-CALCULATOR",

122 "USER.INTERFACEn);

123 end;

124 end if;

125 if not EXCEPTION.JHASOCCURRED then

126 begin

127 DS-DATAhRATE-UTILIZATION-CALCULATOR. BUFFER. WRITE (LVDATARATE);
128 exception

129 when BUFFEROVERFLOW =>
130 DS-DEBUG. BUFFER-OVERFLOW C DATA-RATE-UTILIZATION-CALCULATOR",

131 nUSERINTERFACE");

132 end;

133 begin

134 DS-DATA-.ATE-RCVR. BUFFER. WRITE (LV-DATA-RATE);

135 exception

136 when BUFFEROVERFLOW =>

137 DSD-EBUG.BUFFER-OVERFLOW C DATA-RATE-RCVR", 'USER-INTERFACE");

138 end;

139 end if;

140 if not EXCEPTIONJHAS-OCCURRED then
141 begin

142 DSDATA.SIZE-XMTR. BUFFER.WRITE (LVDATASIZE);

143 exception

144 when BUFFEROVERFLOW =>

145 DS-DEBUG .BUFFER-OVERFLOW (nDATA-SIZE-XMTrR, "USEP-INTERFACE");

53

146 end;

147 end i f;

148 if not EXCEPTION2{1ASOCCURRED then

149 begin

150 DS-START-STOP-cMTR. BUFFER. WRITE (LV-START-STOP);
151 exception
152 when BUFFEROVERFLOW =>

153 DS-DEBUG. BUFFER-OVERFLOW ('START -STOP -XMTR", "USERJINTERFACE');

154 end;

155 begin

156 DS-START-STOPUTILIZATION-CALCULATOR. BUFFER. WRITE (LV STARt-STOP);

157 exception

158 when BUFFE&_OVERFLOW =>

159 DS-DEBUG.BUFFER.OVERFLOW('STAR7ý-STOPJJ-TILIZATIOICCALCULATOR',

160 'USERJINTERFACE-);

161 end;

162 begin

163 D&.START -STOP-RCVR.BUFFER. WRITE (LSLSTART__STOP);

164 exception

165 when BUFFEROVERFLOW =>

166 DSJ2DEBUG. BUFFERSOVERFLOW(C STARThSTOPY--CVR", "USEKJINTERFACE");

167 end;

168 begin

169 DS-STARTh-STOP_-CRAŽNEL..3UFFER.BUFFER.WRITE (LW-STARTý-STOP);

170 exception

171 when BUFFEROVEPFLOW =>

172 DS-DEBUG. BUFFER-OVERFLOW ("START _STOPCHANNEL _BUFFER", "USERJINTBRFACE'j;

173 end;

174 end if;

175 -- PSDL Exception handler.

176 if EXCEPTIONJIAS-OCCURRED then

177 DS-DEBUG.UNHANDLED-EXCEPTION(
178 'USER-INTERFACE",

179 PSDL-EXCEPTION *IHAGE (EXCEPTION-JD));

180 end if;
181 end USERJINTERFACEDRIVER;

182 procedure CHANNEL_BUFFER-DRIVER is

183 LV.._BUFFERLMODIFICATION :INTEGER;

184 LtSTARTSTOP BOOLEAN;

185 LVBUFFERSIZE INTEGER;

186 EXCEPTIOKJIAS-OCCURRED: BOOLEAN := FALSE;
187 EXCEPTIONILID: PSDL-EXCEPTION;

188 begin

189 -- Date trigger checks.

190 if not (DS-BUFFERyMODIFICATION-CHANNEL--BUFFER. NEW-DATA) then

191 return;

192 end if;

193 -- Data stream reads.

194 begin

195 DS-BUFFERJ4ODIFICATION-CHANNEL-BUFFER. BUFFER. READ (LV -BUFFERJIODIFICATION);

196 exception

197 when BUFFERJJNDERFLOW =>

198 DS-DEBUG. BUFFERJJNDEPPLOW("BUFFER34ODIFICATIOIL-CHANNEL-BUFFER",

199 "CHANNELBUFFER');

54

200 end;

201 begin

202 DS-2UFFER-SIZECHANNEL-BUFFER. BUFFER. READ (LVBUFFER-SIZE);

203 exception

204 when BUFFER3INDERFLOW =>
205 DSJ)EBUG. BUFFERJINDERFLOW (BUFFER-SIZE-CI{ANEL-BUFFER", "CHAflNELBUFFER");

206 end;

207 begin

208 DS-2TARTh-STOP-.CHANNEL-BUFFER. BUFFER. BEAn (LV-START-.STOP);

209 exception

210 when BUFFERUNDERFLOW =>
211 DS.DEBUG .BUFFERJJNDERFLOW C START..$TOP-.CEANNEL-BUFFERn, "CHAflNEL..BUFFER");

212 end;

213 -- Execution trigger condition check.

214 if True then

215 begin

216 CHANNEL-BUFFER(

217 BUFFER-..MODIFICATION => LW..BUFFERJ(ODIFICATION,

218 STARTSTOP => LXLSTARTSTOP,

219 BUFFEIKSIZE => LVBUFFEILSIZE);

220 exception

221 when others =>
222 DS3)DEBUO.UNflECLARED-EXCEPTION (CHAflNEL-BUFFER");

223 EXCEPTIONJ{AS-OCCURRED := true;

224 EXCEPTION.JD :=UNDECLARED-.ADA-EXCEPTION;

225 end;

226 else return;

227 end if;

228 -- Exception Constraint translations.

229 -- other constraint option translations.

230 -- Unconditional output translations.

231 if not EXCEPTIONJIAS..OCCURRED then

232 begin

233 DSBFE-IZ-HNE-UFE.UFRWRITE (LV.3UFFER-SIZE);

234 exception

235 when BUFFE&_OVERFLOW =>
236 DS-DEBUO. BUFFE&-OVERFLOW ("BUFFER-SIZESEHANNEL-BUFFER, "CHAflNEL-BUFFER");

237 end;

238 begin

239 DS-BUFFER-2IZEJJTILIZATION-SALCULATOR. BUFFER. WRITE (Lt-BUFFER-SIZE);

240 exception

241 when BUFFE&_OVERFLOW =>
242 DS...DEBUG .BUFFER-OVERFLOW (BUFFER SIZE-UTILIZATION-CALCULATOR",

243 nCEAflNELBUFFER");

244 end;

245 end if;

246 -- PSDL Exception handler.

247 if EXCEPTIONJLAS...OCCURRED then

248 DS-DEBU . UNEANDLED-YXCEPTION(
249 'CHANNEL-BUFFER",

250 PSDL..EXCEPTION IMAGE (EXCEPTION..JD));

251 end if;

252 end CHMNNEL__BUFFERDRIVER;

55

253 procedure RCVRDRIVER is
254 LVWDATA_RATE INTEGER;
255 LV STARTSTOP BOOLEAN;
256 LVWBUFFERMODIFICATION : INTEGER;

257 EXCEPTION2{HASOCCURRED: BOOLEAN := FALSE;
258 EXCEPTIONID: PSDLSEXCEPTION;

259 begin
260 -- Data trigger checks.

261 -- Data stream reads.
262 begin
263 DSDATARATERCVR. BUFFER. READ (LVDATA.RATE);
264 exception
265 when BUFFER_UNDERFLOW =>
266 DSDEBUG.BUFFERJUNDERFLOW("DATARATERCVR", "RCVR");
267 end;
268 begin
269 DSSTARTSTOPRCVR.BUFFER.READ(LV STARTSTOP);
270 exception
271 when BUFFERUNDERFLOW =>
272 DSDEBUG.BUFFERJUNDERFLOW("START_STOPRCVR", "RCVR");
273 end;

274 -- Execution trigger condition check.
275 if LVSTARTSTOP then
276 begin

277 RCVR(
278 DATARATE => LVDATA__RATE,
279 START-STOP => LVSTARTSTOP,
280 BUFFER-MODIFICATION => LV_BUFFER_MODIFICATION);

281 exception
282 when others =>
283 DS-DEBUG.UNDECLARED-EXCEPTION("RCVR.);
284 EXCEPTIONHASOCCURRED : = true;
285 EXCEPTIONID := UNDECLAREDADAEXCEPTION;

286 end;
287 else return;

288 end if;

289 -- Exception Constraint translations.

290 -- Other constraint option translations.

291 -- Unconditional output translations.
292 if not EXCEPTIONJIHASOCCURRED then
293 begin
294 DSBUFFER-MODIFICATIONCHANNELBUFFER.BUFFER.WRITE(LVtBUFFERMODIFICATION);

295 exception
296 when BUFFER-OVERFLOW =>
297 DS-DEBUG.BUFFEROVERFLOW("BUFFERJMODIFICATION-CHANNELBUFFER', "RCVR");
298 end;

299 end if;

300 -- PSDL Exception handler.
301 if EXCEPTION_HASOCCURRED then
302 DSDEBUG.UNHANDLEDEXCEPTION(

303 -RCVR",

56

304 PSDL-EXCEPTION'IMAGE (EXCEPTIONID));

305 end if;

306 end RCVRDRIVER;

307 procedure UTILIZATION-CALCULATORDRIVER is

308 LV..BUFFER-SIZE INTEGER;

309 LV-DATA-PERIOD INTEGER;

310 LV-DATA-RATE INTEGER;

311 LV-START-STOP BOOLEAN;

312 LV-UTILIZATION INTEGER;

313 EXCEPTIONJiASOCCURRED: BOOLEAN := FALSE;

314 EXCEPTIONLID: PSDLEXCEPTION;

315 begin

316 -- Data trigger checks.
317 if not (DSBUFFERSIZEUTILIZATION-CALCULATOR.NEWDATA) then

318 return;

319 end if;

320 -- Data stream reads.

321 begin

322 DS-BUFFE-SIZE-UTILIZATION.-CALCULATOR. BUFFER. REAn (LV..BUFFER-SIZE);

323 exception

324 when BUFFERUNDERFLOW =>

325 D&.DEBUG. BUFFER-UNDERFLOW (BUFFER-SIZEJJUTILIZATION-CALCULATOR",
326 'UTILIZATION...CALCULATOR-);

327 end;

328 begin

329 DS-.DATA-PERIOD ITILIZATION-CALCULATOR. BUFFER. READ (LV-DATA-PERIOD);

330 exception

331 when BUFFER.J3NDERFLOW =>
332 DS-DEBUG .BUFFER-UNDERFLOW (DATA-PERIOD-UTILIZATION--CALCULATOR-,
333 -UTILIZATION-CALCULATOR");

334 end;

335 begin

336 DSDT-AEUTLZTO-ACUAO.UFRREAD (LV-DATA-RATE);
337 exception

338 when BUFFERUNDERFLOW =>
339 DS-DEBUG. BUFFER-UNDERELOW ('DATA-RTE-.UTILIZATION-CALCULATOR",

340 nUTILIZATION-CALCULATOR");

341 end;
342 begin

343 DS-START-STOP UTILIZATION-CALCULATOR. BUFFER. READ (LW..START-STOP);
344 exception

345 when BUFFERUNDERFLOW =>
346 DS-DEBUG. BUFFER.JJNDERFLOW ("START-STOPJJTILIZATION...CALCULATOR',
347 -UTILIZATIONCALCULATORn);

348 end;

349 -- Execution trigger condition check.
350 if True then

351 begin

352 UTILIZATION...CALCULATOR(

353 BUFFER...SIZE => LV._BUFFER...SIZE,

354 DATA-PERIOD => LVDATAPERIOD,
355 DATA-RATE => LVDATARATE,
356 START-STOP => LV...STARTSTOP,

357 UTILIZATION => LV_.UTILIZATION);

57

358 exception

359 when others =>

360 DSSDEBUG. UNDECLARED -EXCEPTION ('UTILIZATION CALCULATOR");
361 EXCEPTIONJIHAS-OCCURRED : = true;

362 EXCEPTION _ID := UNDECLARED-ADA-EXCEPTION;

363 end;

364 else return;

365 end if;

366 -- Exception Constraint translations.

367 -- other constraint option translations.

368 -- Unconditional output translations.

369 if not EXCEPTION__HASOCCURRED then

370 begin

371 DS..UTILIZATION-USER-INTEREACE.-BUFFER.WRITE (LV -UTILIZATION);

372 exception

373 when BUFFEROVERFLOW =>

374 DS-.DEBUG .BUFFER-.OVERFLOW(C UTILIZATION.JJSERJINTERFACE",

375 'UTILIZATIOILCALCULATOR");

376 end;

377 end if;

378 -- PSDL Exception handler.

379 if EXCEPTION-HAS-OCCURRED then

380 DS32DEBUG. UNHANDLED-EXCEPTION

381 'UTILIZATION-CALCULATOR",

382 PSDL-EXCEPTION' IMAGE (EXCEPTION-ID));

383 end if;

384 end UTILIZATION _CALCULATORDRIVER;

385 procedure XMTRDRIVER is

386 LV__DATAPERIOD : INTEGER;

387 LVSDATA-SIZE :INTEGER;

388 LV..START STOP :BOOLEAN;

389 LVLBUFFERMODIFICATION : INTEGER;
390 LVPERIOD _COUNTER : INTEGER;

391 EXCEPTIONHAS-OCCURRED: BOOLEAN := FALSE;

392 EXCEPTION _ID: PSDLEXCEPTION;

393 begin

394 -- Data trigger checks.

395 -- Data stream reads.

396 begin

397 DSSDATA..PERIOD-XNTR. BUFFER. READ (LVDATA-PERIOD);

398 exception

399 when BUFFERUNDERFLOW =>

400 D5.DEBUG .BUFFERJJNDERFLOW (UDATA-.PERIODýXNTR', -XMTR");
401 end;

402 begin

403 DS...DATA-SIZE XMTR. BUFFER. READ (LVJ-ATA-.SIZE);
404 exception

405 when BUFFERUNDERFLOW =>

406 DSDEBUG. BUFFERJINDERFLOW (DATA.SIZE-XMTR", "XMTR");

407 end;

408 begin

58

409 DSSPERIOD-COUNTERJCMTR. BUFFER. READ (LV..PERIODSCOUNTER);

410 exception
411 when BUFFERJINDERFLOW =>
412 DS-DEBUG .BUFFERJJNDERFLOW(- PERIODSCOUNTERcMTR', ' XMTR'jl;

413 end;

414 begin

415 DS-START-STOPJCXMTR. BUFFER. READ (L\LSTART-STOP);

416 exception

417 when BUFFERJJNDERFLOW =>

418 DSSDEBUG.BUFFERJJNDERFLOW(" STARTh-STOPJNMTR", "XMTR");

419 end;

420 -- Execution trigger condition check.

421 if LVSTARTSTOP then

422 begin

423 XNTR(

424 DATAPERIOD => LVDATAPERIOD,
425 DAT&_SIZE => LV.J2ATA_.SIZE,

426 START_.STOP => LVý_START_STOP,

427 BUFFER-MODIFICATION => LV-BUFFERJ4ODIFICATION,
428 PERIOD-COUNTER => LSUPERIOD-.COUNTER);

429 exception

430 when others =>
431 DS.DEBUO.UNDECLARED...EXCEPTION('XMTR

0
);

432 EXCEPTIONILHAS-OCCURRED := true;

433 EXCEPTION _ID :=UNDECLARED_.ADA_.EXCEPTION;

434 end;

435 else return;

436 end if;

437 -- Exception Constraint translations.

438 -- other constraint option translations.

439 -- Unconditional output translations.

440 if not EXCEPTIONJIHASOCCURPED then

441 begin

442 DS-BUFFERJ{ODIFICATIONSCHANNEL..BUFFER. BUFFER. WRITE (LWBUFFER34ODIFICATION);

443 exception

444 when BUFFEROVERFLOW =>

445 DS-DEBUG .BUFFER-OVERFLOW (BUFFERJ&ODIFICATION..CHA24NELBUFFER", "XNTR");

446 end;

447 end if;

448 if not EXCEPTIONJIHAS_.OCCURRED then

449 begin

450 DS-PERIODSCOUNTERJXMTR. BUFFER. WRITE (LV..PERIODS-OUNTER);

451 exception

452 when BUFFERLOVERPLOW =>

453 DS-.DEBUG.BUFFERSOVERFLOW (nPERIODSCOUNTE1LXNTfRn, "XHTR');
454 end;

455 end if;

456 -- PSDL Exception handler.

457 if EXCEPTION.JIAS-OCCURPED then

458 DS..DEBUG.UNHANDLED-.EXCEPTION(

459 ')TR',

460 PSDLEXCEPTION IMAGE (EXCEPTIONID));

461 end if;

462 end D4TRDRIVER;

59

463 end CHANNELSCATDRIVERS;

464 package channel_cat_DYNAMIC_SCHEDULERS is

465 procedure STARTDYNAMIC-SCEEDULE;

466 end channel-cat-DYNAMIC-SCHEDULERS;

467 with channel~cat _DRIVERS; use channel catDRIVERS;

468 with PRIORITYSDEPINITIONS; use PRIORITYDEEINITIONS;

469 package body channe~catDYNAMICSCHEDULERS is

470 task type DYNAMICSCEEDULETYPE is

471 pragmna priority (DYNAMICSCHEDULEPRIORITY);

472 entry START;

473 end DYNAMIC-SCHEDULESTYPE;

474 for DYNAMIC.SCHEDULETYPE'STORAC&_SIZE use 100_000;

475 DYNAMICSCHEDULE :DYNAMICSCHEDULE.SYPE;

476 task body DYNAMIC-SCHEDULE_TYPE is

477 begin

478 accept START;

479 loop

480 utilization~calculatorDRlVER;

481 charme1JbufferDRIVER;

482 end loop;

483 end DYNAMIQ.SCHEDULETYPE;

484 procedure START32YNAMICSCHEDULE is

485 begin

486 DYNAMIC-SCHEDULE.-START;

487 end STARTDYNAMICSCHEDULE;

488 end chanel~catDYNAMICSCHEDULERS;

489 package channel-cat-STATIC_SCHEDULERS is

490 procedure STARTSTATICSCHEDULE;

491 end channel~catSTATICSCHEDULERS;

492 with channet~catDRlVERS; use channel~catDRlVERS;

493 with PRIORITYJ2HFINITIONS; use PRIORITYJ2EFINITIONS;

494 with PSDLSTIMHRS; use PSDLTIHERS;

495 with TEXrLJO; use TEXTIO;

496 package body channel~catSTATlC_SCHEDULERS is

497 task type STATICSCHEDULEJPYPE is
498 pragma priority (STATIC-SCHHDULESPRIORITY);

499 entry START;

500 end STATIQ.SCHEDULHTYPE;

501 for STATIC.SCHEDULE-TYPE STORAGESIZE use 200_000;

502 STATIC-SCHEDULE :STATICSCHEDULE-TYPE;

503 task body STATIC-SCHEDULE-TYPE is

504 PERIOD :duration;

505 user-interfaceSTART.TIHE1 duration;

506 user~interfaceSTOPTIHEl duration;

507 rcvr-START-TIME2 duration;

508 rcvr.STOP-TIME2 duration;

509 xmtr-START-TIHE3 duration;

60

510 xmtr_STOP_TIME3 :duration;

511 user interfaceSTART _TIME4 :duration;

512 userjinterfaceS.TOP_.TIME4 :duration;

513 rcvrSTARTTIMES duration;

514 rcvr..STOP-TIMES duration;

515 schedule-timer :TIMER :=NEWTIMER;

516 begin

517 accept START;

518 PERIOD :=TARGET.TO.JIOST(duration(1.00000000000000E+00));

519 userjinterfaceSTART _TIMEl TARGEThTOJ{HOST(duration(0 .00000000000000E+00));

520 user interfaceSTOPTIMEl TARGEThTOJIOST(duration(2. 00000000000000E-01));

521 rcvr START-TIME2 TARGET-TO-JIOST(duration(2.00000000000000E-01));

522 rcvr_.STOPTIME2 TARGET_.TO_.HOST(duration(2.50000000000000E-01));

523 xntr-START. TIME3 TARGET-TOJ{OST(duration(2.50000000000000E-01));

524 xmtrSTOP..T1ME3 TARGETT0J{OST(duration(3.00000000000000E-01));

525 user__nterfaceSTART__TIME4 TARGEThTO-JIOST (duration(5.00000000000000E-01));

526 userjinterfaceSTOPTIME4 TARGETSTO.JOST(duration(7. 00000000000000E-01));

527 rcvr..START-TIMES TARGET-TOJIOST(duration(7. 00000000000000E-01));

528 rcvr..STOP-TIMES TARGET-.TO-.HOST(duration(7.50000000000000E-01));

529 START (schedule-timer);

530 loop

531 delay(userjinterfaceSTARTTIME1 - HOSTDURATION(schedule~timer));

532 user interfaceDRIVER;

533 if HOST-DURATION(schedule-timer) > user -interfaceSTOPTIMEl then
534 PUT-LINE("timing error from operator user-interface');

535 SUBTRACTJ{OST-TIME-YRO&-ALLTIMERS (HOSThDURATION (schedlule~timer)-

536 user~interface..STOP-TIMEl);

537 end if;

538 delay (rcvr..$TARTT.IME2 - HOSThDURATION (schedule~timer));

539 rcv-rJRIVER;
540 if HOST-DURATION(schedule timer) > rcvrSTOPTIME2 then
541 PUT-LIME("timing error from operator rcvr");

542 SUBTRACTJIOST-TIMESFROM-ALL-TIMERS (HOSTDURATION (schedule-timer)-
543 rcvr-STOPT1ME2);

544 end if;

545 delay(mtrSTARTTIME3 - HOSTXURATION(schedule~timer));

546 xmtrJDRIVER;

547 if EOST-DURATION(schedule timer) > xmtrSTOP_.TIME3 then

548 PUT-LINE('timing error from operator xntr");

549 SUBTRACTJ{OST -TINESFRO!'ALL-TIMERS (HOSTý_DURATION (schedule-tiner)-

550 xmtr_STOP_.TIME3);

551 end if;

552 delay (user-.interfaceSTARTTIME4 - HOSTDURATION (schedule..timer));

553 user..interfaceDRIVER;

554 if HOSTJJURATION(schedule-timer) > user _interfaceSTOPTIME4 then
555 PUT-LINE(ntiming error from operator user..Anterfacen);

556 SUBTRACT-HOST-TIME-FROI(ALL-TIMERS (EOST..DURATION (schedule-timer)-
557 user-interface-STOPTlME4);

558 end if;

559 delay (rcvr..START-.TIMES - HOSTDURATION (schedule...timer));

560 rcvrDRIVER;

561 if HOSTDTJRATION(schedule timer) > rcvrSTOPSTIMES then

562 PUT-LINE("timing error from operator rcvr");

563 SUBTRACTJIOST-TIME-YROMJLL-TIMERS (HOSTDORATION (schedule timer)-

564 rcvr-STOP..TIMES);

61

565 end if;

566 delay(PERIOD - HOSTDURATION(schedule-timer));
567 RESET(scheduletimer);

568 end loop;
569 end STATICSCHEDULETYPE;

570 procedure STARTSTATICSCHEDULE is
571 begin

572 STATICSCHEDULE.START;

573 end STARTSTATICSCHEDULE;

574 end channel-catSTATICSCHEDULERS;

575 with CHANNELCATSTATICSCHEDULERS; use CHANNELCATSTATICSCHEDULERS;
576 with CHANNELCATDYNAMICSCHEDULERS; use CHANNEL_CAT_DYNAMIC_SCHEDULERS;
577 with CAPSHARDWARE_MODEL; use CAPSJiARDWAREMODEL;

578 procedure CHANNEL_CAT is

579 begin

580 inithardwaremodel;

581 start-staticschedule;
582 start-dynamic-schedule;

583 end CHANNEL_CAT;

584- --

585 -- File : CHANNELBUFFERPKG
586 -- Author : Mike Coleman, CAPT, USMC
587 -- Project : Channel CAT (Thesis project)
588 -- Date : September 1997
589 -- Notes : Any personal comment by author will use
590 -- standard comments followed by initials (mgc).
591 -- Description : This package is designed to implement the
592 simulation of a TRI-TAC digital channel by

593 using an integer buffer. This buffer is
594 subject to modification by two external
595 -- operators, xmtr and rcvr. These two
596 send identical streams to the buffer, with
597 xmtr providing a positive integer and rcvr
598 providing a negative integer value. The
599 value of the buffer is output upon
600 modification.

601 --

602 with System;use System;
603 with TextIO;

604 -- Specification for CHANNELBUFFERPKG

605 package CHANNEL.BUFFERPKG is

606 -- Procedure: CHANNELBUFFER
607 -- Purpose : Operator which acts as the "channel" in Channel CAT.
608 -- Parameters: BUFFER-MODIFICATION : an integer data type which
609 -- can be received from either the
610 -- rcvr or xmtr.
611 -- STARTSTOP : a boolean value used to designate
612 -- whether the channel should be running or

62

613 -- paused (paused refers to being "froze").

614 procedure CHANNELBUFFER

615 (BUFFER-MODIFICATION : IN INTEGER;
616 STARTSTOP IN BOOLEAN;

617 BUFFERSIZE IN OUT INTEGER);

618 end CHANNELBUFFERPKG;

619 -- Body for CHANNEL_BUFFERPKG

620 package body CHANNELBUFFERPKG is

621 procedure CHANNELBUFFER
622 (BUFFER_MODIFICATION : IN INTEGER;

623 STARTSTOP IN BOOLEAN;

624 BUFFERSIZE IN OUT INTEGER) is

625 begin
626 BUFFERSIZE BUFFERSIZE + BUFFER_MODIFICATION;
627 if (BUFFER-SIZE < 0) then
628 BUFFERSIZE := 0;
629 end if;
630 exception
631 when Numeric-Error =>
632 BUFFERSIZE := MaxInt;
633 end CHANNELBUFFER;
634 end CHANNELBUFFERPKG;

635---
636 -- File : RCVRPKG
637 -- Author Mike Coleman, CAPT, USMC
638 -- Project Channel CAT (Thesis project)
639 -- Date September 1997
640 -- Notes Any personal comment by author will use
641 -- standard comments followed by initials (mgc).

642 -- Description : This package is designed to simulate the
643 -- portion of a TRI-TAC responsible for the
644 -- receipt of data on the channel (receiver).
645 -- This is done by sending channel a negative
646 -- number to be applied to the buffer, thereby
647 -- simulating receipt of data and it removal
648 -- from the channel. The amount which is
649 "removed" is dependent upon the datarate,

650 -- which supplied by the user.

651- --

652 with System;use System;

653 with TextIO;

654 -- Specification for RCVRPKG

655 package rcvr-pkg is

656 -- Procedure: RCVR
657 -- Purpose : Operator which acts as the "receiver" in Channel CAT.
658 -- Parameters: DATARATE : an integer value which represents the
659 -- total size in bytes of the data element

660 -- which being transmitted.

661 -- START-STOP a boolean value used to designate

63

662 -- whether the channel should be running or

663 -- paused (paused refers to being "froze,).

664 -- BUFFER-MODIFICATION : an integer data type which
665 -- is sent to CHANNELBUFFER.

666 procedure RCVR(DATA_RATE IN INTEGER;

667 STARTSTOP IN BOOLEAN;

668 BUFFER-MODIFICATION : OUT INTEGER);

669 end rcvr.pkg;

670 -- Body for RCVRPKG

671 package body rcvr-pkg is

672 package UtilIO is new TextIO.IntegerIO(Integer);

673 procedure RCVR (DATARATE IN INTEGER;

674 STARTSTOP IN BOOLEAN;-
675 BUFFER-MODIFICATION : OUT INTEGER) is

676 ops-per-second : integer := 2;

677 amount-per_500_ms : integer;

678 BEGIN

679 if DATARATE > 2 then
680 amountper_500_ms := (DATARATE) /
681 ops-per-second;

682 BUFFER-MODIFICATION -amount_per_500_ms;

683 else

684 BUFFER-MODIFICATION -1;

685 end if;

686 end RCVR;

687 end rcvrpkg;

688- --

689 -- File : UTILIZATIONCALCULATORPKG
690 -- Author Mike Coleman, CAPT, USMC
691 -- Project Channel CAT (Thesis project)

692 -- Date September 1997
693 -- Notes Any personal comment by author will use
694 -- standard comments followed by initials (mgc).

695 -- Description : This package is designed provide formatting

696 of the results from Channel CAT. To ease
697 interpretation, this function computes the

698 maximum sustainable buffer size for the

699 - current data-period, computes an integer

700 -- solution for percentage of usage at the

701 actual time, and sends the utilization to

702 the results panel in TAE. These calculations

703 are dynamically based on the user supplied

704 data-rate, which is converted to bytes/sec.

705- --

706 with System;use System;
707 with TextIO;

708 -- Specification for UTILIZATION_CALCULATORPKG

64

709 package UTILIZATIONCALCULATORPKG is

710 -- Procedure: UTILIZATIONCALCULATOR

711 -- Purpose : Operator which computes the percentage of the max

712 -- channel capacity currently being used.

713 -- Parameters: BUFFER-SIZE integer value containing the current

714 -- size of the buffer.

715 -- DATA-PERIOD integer value which is the period at

716 -- which data is being sent to channel.

717 -- DATA.RATE : integer value which contain the current

718 -- speed of the channel.

719 -- STARTSTOP : a boolean value used to designate

720 -- whether the channel should be running or

721 -- paused (paused refers to being "froze").

722 -- UTILIZATION : integer value sent to the results panel

723 -- for display as the used percentage.

724 procedure UTILIZATIONCALCULATOR (BUFFERSIZE : IN INTEGER;

725 DATA_PERIOD : IN INTEGER;

726 DATARATE : IN INTEGER;

727 START-STOP : IN BOOLEAN;

728 UTILIZATION : OUT INTEGER);

729 end UTILIZATION_CALCULATORPKG;

730 -- Body for UTILIZATIONCALCULATOR.PKG

731 package body UTILIZATIONCALCULATORPKG is

732 package UtilIO is new Text_IO.IntegerIO(Integer);

733 procedure UTILIZATION-CALCULATOR (BUFFER-SIZE : IN INTEGER;

734 DATA-PERIOD : IN INTEGER;

735 DATARATE : IN INTEGER;

736 START-STOP : IN BOOLEAN;

737 UTILIZATION : OUT INTEGER) is

738 buffer_maximum : integer : (DATA-RATE * DATA-PERIOD);

739 texUTILIZATION : integer;

740 begin

741 UTILIZATION := integer(100.0*float(float(BUFFERSIZE)/float(buffermaximum)));

742 texUTILIZATION := integer(100.0*float(float(BUFFERSIZE)/float(buffer-maximum)));
743 TextIO.Put("Channel utilization is :

744 UtilIIO.Put(texUTILIZATION);

745 TextIO.PutLine(" %");

746 end UTILIZATIONCALCULATOR;

747 end UTILIZATIONCALCULATORPKG;

748- --

749 -- File : XMTRPKG

750 -- Author : Mike Coleman, CAPT, USMC

751 -- Project : Channel CAT (Thesis project)

752 -- Date : September 1997

753 -- Notes : Any personal comment by author will use

754 -- standard comments followed by initials (mgc).

755 -- Description : This package is designed to simulate the

756 -- portion of a TRI-TAC link best described as

65

757 -- the transmitter, which places data onto the
758 -- channel. In ChannelCAT, the xmtr places
759 -- data on the channel by passing a positive
760 -- integer value to channel-buffer, representing
761 -- the byte size of the data. A state variable,
762 -- period counter is used to allow xmtr to be
763 -- statically scheduled at a period of 10OOms,
764 -- but manage complete firing of the operator
765 -- based on the user supplied data-period.
766 ..

767 with TextIO;

768 -- Specification for XMTRPKG

769 package XMTRPKG is

770 -- Procedure: XMTR

771 -- Purpose : Operator which acts as the "transmitter" in Channel CAT.
772 -- Parameters: DATA_PERIOD : integer value which is the period at
773 -- which data is to sent to the channel.
774 -- DATASIZE : integer value which is the size of the
775 -- data element being transmitted.
776 -- STARTSTOP : a boolean value used to designate
777 -- whether the channel should be running or
778 -- paused (paused refers to being "froze").
779 -- BUFFER-MODIFICATION : an integer data type which
780 -- can be received from either the
781 -- rcvr or xmtr.
782 -- PERIODCOUNTER : local integer state value used to
783 -- control complete firing of XMTR to
784 -- comply with user selected period.
785 procedure XMTR(DATAPERIOD : IN INTEGER;
786 DATASIZE : IN INTEGER;
787 START_STOP : IN BOOLEAN;
788 BUFFER-MODIFICATION : OUT INTEGER;
789 PERIOD_COUNTER : IN OUT INTEGER);

790 end XMTRPKG;

791 -- Body for XMTPKG

792 package body XMT&.PKG is

793 procedure XMTR (DATA_PERIOD : IN INTEGER;

794 DATA_SIZE : IN INTEGER;
795 STARTSTOP : IN BOOLEAN;
796 BUFFER-MODIFICATION : OUT INTEGER;

797 PERIODCOUNTER : IN OUT INTEGER) is
798 begin
799 -- Increment the period_counter
800 PERIOD_COUNTER := PERIOD-COUNTER + 1;
801 -- Now check the period_counter to see if it matches
802 -- the user supplied DATA-PERIOD. The period for xmtr
803 -- is 10OOms, so the period_counter will be incremented
804 -- every second, which is quantized increment for user
805 -- supplied data-period values.
806 if PERIODCOUNTER = DATA_PERIOD then

66

807 BUFFERMODIFICATION DATASIZE;
808 PERIOD-COUNTER := 0;

809 else
810 BUFFER-MODIFICATION 0;
811 end if;
812 end XMTR;
813 end XMTRPKG;

67

68

APPENDIX C. USER INTERFACE CODE

1--

2 -- File : USERINTERFACEPKG
3 -- Author Mike Coleman, CAPT, USMC
4 -- Project : Channel CAT (Thesis project)
5 -- Date September 1997
6 -- Notes : Any personal comment by author will use
7 -- standard comments followed by initials (mgc).
8 -- Description : This package is designed to implement the
9 -- user interface for Channel CAT in TAE+.

10---

11 -- *** TAE+ WorkBench version V5.3 ***
12---

13---
14

15 with tae; use tae;
16 with XWindows;
17 with text-io;

18 -- Specification for USERINTERFACEPKG

19 package userjinterface-pkg is

20 -- Procedure: USER_INTERFACE
21 -- Purpose : Provide a graphical interface to the Channel CAT
22 -- prototype. This is a two panel interface, one panel
23 -- dedicated to the input of run-time parameters and the
24 -- second panel used to graphically display results.
25 -- Parameters: UTILIZATION : an integer data type returned from the
26 -- prototype. Represents the percentage of
27 -- the maximum channel capacity which is
28 -- currently being utilized.
29 -- DATA-PERIOD : an integer value sent to the prototype
30 -- after being set by the user to designate
31 -- the frequency of data transmission to the
32 -- channel.
33 -- DATA-SIZE : an integer value sent to the prototype
34 -- after being set by the user to designate
35 -- the size of the data element/object to be
36 -- sent over the channel.
37 -- START_STOP : a boolean value sent to the prototype
38 -- after being set by the user to designate
39 -- whether the channel should be running or
40 -- paused (paused refers to being 'froze").
41 procedure USERINTERFACE (UTILIZATION : IN INTEGER;DATAPERIOD : OUT
42 INTEGER;DATARATE : OUT INTEGER;DATASIZE : OUT INTEGER;STARTSTOP : OUT BOOLEAN);
43 -- (mgc)

44 package taefloatio is new text-io.float-io (taefloat);
45 procedure initializePanels (file : in string); -- NOTE: params changed

46 -- BEGIN EVENT_HANDLERs

47 -- Event handler for changes to the DATAPERIOD parameter
48 procedure params-input-period (info : in taewpt.event-context-ptr;period-entry : out
49 INTEGER);

69

50 -- Event handler for changes to the DATARATE parameter

51 procedure params-input-rate (info : in tae-wpt.event-context-ptr;rate-entry out

52 INTEGER);

53 -- Event handler for changes to the DATASIZE parameter

54 procedure params_input-size (info : in taewpt.eventcontext-ptr;sizeentry out

55 INTEGER);

56 -- Event handler for changes to the START-STOP parameter
57 procedure params.±startbutton (info in tae-wpt.event-context-ptr;start-entry out
58 BOOLEAN);

59 -- END EVENTHANDLERs

60 end user-interface-pkg;

61 -- Body for USERINTERFACE_PKG

62 with tae;
63 with TextIO;

64 package body user-interface-pkg is

65 use tae.tae_misc;

66 theDisplay : XWindows.Display;
67 ApplicationDone : boolean := false;
68 user-ptr : tae-wpt.eventcontextptr;
69 params-info tae-wpt.event-context-ptr;
70 results-info tae-wpt.event-context-ptr;

71 etype : wpt-eventtype;
72 wptEvent : tae-wpt.wpt-eventptr;

73 -- Declared local variables to prevent reset to zero when
74 -- there is no user input.

75 local_data-period : integer := 1;
76 localdatarate integer 1;
77 local-data-size integer 1;
78 local-startstop boolean FALSE;

79 procedure initializePanels (file : in string) is

80

81 use tae.taeco;

82
83 use tae.tae-misc;

84
85 tmp-info : tae-wpt.eventcontextptr;
86
87 begin

88
89 -- do one CoNew and CoReadFile per resource file

90

91 tmp-info := new tae-wpt.event_context;

92
93 CoNew (0, tmp-info.collection);

70

94
95 -- could pass P-ABORT if you Prefer
96
97 CoReadFile (tmp-info.collection, file, P-CONT);

98 -- pair of CoFinds for each panel in this resource file

99 params-info :=new tae-wpt.event-context;
100 params-info.collection :=tmp-info.collection;
101 Co-Find (params-info.collection, "parans~v", params-info.view);
102 Co-Find (params-info.collection, "params...t", params-info.target);
103
104 results-info :=new tae wpt.event-context;
105 results-info.collection :=tmp-info. collection;
106 Co...Find (results-info.collection, "results~v', resultsjinfo.view);
107 Co-Find (results..info.collection, nresults~t", results_info.target);
108

109 -- Since there can now be MULTIPLE INITIAL PANELS defined from
110 -- within the TAE WorkBench, call WptNewPanel for each panel
1ill - defined to be an initial panel (but not usually all the panels
112 -- which appear in the resource file).

113
114 if parans-info.panel-id = NULLPANEL-ID then
115 tae-wpt .Wpt.JNewPanel (theDisplay, params-info.target, params-info .view,

116 X-Windows .Null-Window, params-info, tae~wpt .WPT_-PREFERRED,

117 paramnsinfo.panel-id);

118 else
119 tae-wpt.Wpt-SetPanelState
120 params-info .panel-id, taeywpt .WPT-PREFERRED);
121 end if;

122 if results-info.panel~id = NULLPANELID then
123 tae..ypt.Wpt.JqewPanel (theDisplay, results-info. target, results-info.view,
124 XjWindows .Nu1l-Window, results-info, tae-wpt .WPTPREFERRED,
125 results-info.panel-id);
126 else
127 tae-wpt.Wpt-SetPanelState
128 results-info.paneljid, tae-wpt.WPT-PREFERRED);
129 end if;

130 end initializePanels;

131 -

132 -

133 BEGIN EVENT.JHANDLERs
134 --

135
136 procedure params-input-period (inf o :in taewt. event--context~ptr;
137 period-entry :out integer) is
138 value array (1..1) of taefloat;
139 count taeint;
140
141 begin
142 --text-io.put ("Panel params, paris input-period: value
143 taev.Vm-ExtractCount (info.parm-ptr, count);
144 if count <= 0 then
145 --text..io.put-line ("none");

71

146 null;
147 else
148 tae-vm.VmExtract_RVAL (info.parmptr, 1, value(l));
149 -- taefloatio.put (value(l));
150 -- text io.new line;
151 end if;
152 -- Take the value which was input and send it to the
153 -- prototype via the output parameter
154 period-entry := integer(value(l));
155 end params-input-period;
156
157 procedure params-inputrate (info : in tae_wpt.event~contextptr;
158 rate-entry : out integer) is
159 value array (1..1) of taeint;
160 count taeint;
161
162 begin
163 -- text-io.put ("Panel params, parmn inputrate: value = ");
164 tae_vm.VmExtractCount (info.parmptr, count);
165 if count <= 0 then
166 -- text-io.put-line ("none");
167 null;
168 else
169 tae-vm.VmExtractIVAL (info.parm_ptr, 1, value(l));
170 -- text-io.put-line (taeint'image(value(1)));
171 end if;
172 -- Take the value which was input and send it to the
173 -- prototype via the output parameter
174 rate-entry := integer(value(l));
175 end params-input-rate;
176
177 procedure params-input-size (info : in tae_wpt.event-context-ptr;
178 size entry : out integer) is
179 value array (I..1) of taeint;
180 count taeint;

181 package UtilIO is new TextIO.IntegerIO(Integer);
182
183 begin
184 -- text-io.put ("Panel params, parm input-size: value
185 taenvm.Vm_ExtractCount (info.parm-ptr, count);
186 if count <= 0 then
187 -- text-io.put-line ("none");
188 null;
189 else
190 tae_vm.VmExtractIVAL (info.parm_ptr, 1, value(l));
191 -- text-io.put-line (taeint'image(value(1)));
192 end if;
193 -- Take the value which was input and send it to the
194 -- prototype via the output parameter
195 size-entry := integer(value(l));
196 end params-input-size;
197
198 procedure params-startbutton (info : in tae_wpt.eventcontext-ptr;
199 startentry : out boolean) is
200 value array (I..i) of string (l..taetaeconf.STRINGSIZE);
201 count taeint;
202
203 begin

72

204 -- text-io.put ("Panel params, parm startJutton: value
205 tae_vm.Vm_ExtractCount (info.parm-ptr, count);
206 if count <= 0 then
207 -- text-io.put-line ("none");
208 null;
209 else
210 tae-vm.VmExtractSVAL (info.parm-ptr, 1, value(l));
211 -- text-io.put-line (value(l));
212 end if;
213 -- Take the value which was input and send it to the
214 -- prototype via the output parameter
215 -- This requires testing the local value of the output
216 -- parameter to determine the proper boolean change.
217 if localstartstop = TRUE then -- prototype is running
218 start-entry := FALSE; -- set prototype to stop
219 local-start-stop := FALSE; -- update local variable
220 else if local-start-stop = FALSE then -- prototype is stopped
221 start-entry := TRUE; -- set prototype to run
222 local-start-stop := TRUE; -- update local variable
223 end if;
224 end if;

225 end params-startbutton;
226
227
228 --

229 END EVENTHANDLERs

230---

231 --

232 -- Main Program

233 --

234 procedure USER_INTERFACE (UTILIZATION IN INTEGER;

235 DATAPERIOD : OUT INTEGER;

236 DATA-RATE OUT INTEGER;
237 DATA-SIZE : OUT INTEGER;

238 START-STOP : OUT BOOLEAN) is

239 begin

240 tae.wpt.WptNextEvent (wptEvent, etype); -- get next event

241 -- NOTE: This case statement includes STUBs for non-WPTPARMEVENT events.

242 case etype is

243 when wpt-eventtype'first .. -1 => null;
244 -- iterate loop on WptNextEvent error

245 -- TYPICAL CASE: Panel Event (WPTPARM_EVENT)

246 when taewpt.WPT_PARLEVENT =>
247 -- You can comment out the following "put" call.
248 -- The appropriate EVENT.J{ANDLER finishes the message.
249 -- text-io.put ("Event: WPTPARM-EVENT,)

250 -- Panel event has occurred.

73

251 -- Get parm name and then call appropriate EVENT2{ANDLER.
252 -

253 -- CAUTION:
254 -- DO NOT call WptExtract-ParmxyEvent from any other branch
255 -- of this "case" statement or you'll get "storage~error" -

256 -

257 tae-wpt.Wpt-Extract-Context (wptEvent, user-ptr);
258 tae-wpt.WptExtractParm (wptEvent, user-ptr.parm-name);
259 tae-wpt.WptExtractData (wptEvent, user-ptr.datavm-ptr);
260 tae-ym.VmjFind (usersptr.datavm~ptr, user-ptr.parn-name,
261 user-ptr.parm-ptr);
262
263 -- WPTPAPJLEVENT, BEGIN panel params
264
265 if taewpt."=" (user-ptr, paramsjinfo) then
266 -- determine appropriate EVENT-HANDLER for this item
267 if s-egual ("input-period", user-ptr.parn~nane) then
268 paransjinput-period (user-ptr, local-data-period);
269 elsif s-egual ("input...rate", user-ptr.parnuname) then
270 parans-input-rate (user~str, local-data-rate);
271 elsif s-egual ("input-size", user-ptr.parm~name) then
272 paransjinput-size (user-ptr,local-4ata-size);
273 elsif s-egual ("start-hutton", user...ptr.parmniame) then
274 parans-startjbutton (user-ptr, local-start~stop);
275 end if; -- END panel parans
276
277 -- WPT-PAPICEVENT, BEGIN panel results
278 else
279 text-io.put-line ("unexpected event from wpt!")
280 --exit; -- or raise an exception, but compiler warms if no exit
281 end if;

282 when tae~wpt.WPTSFILEEV',ENT =>
283 textjio.put-line ("STUB: Event WPTSFILE-EVENT");

284 -- Use WptAddEvent and WptRemoveEvent and
285 -- tExtractEventSource and WptExtractEventMask

286 when tae-wpt .WPTSTII2OUTEVENT =>
287 -- text-io.put-line ("STUB: Event WPT__IMEOUTEVENT");
288 null;
289 -- Use Wpt_SetTimeOut for this

290 when tae-wpt.WPTTIMEREVENT =>
291 textjio.put..jine ("STUB: Event WPIýTIflR&2VENT");

292 -- Use WpC-AddTimer and WptRemoveTimer and
293 -- Wpt-Extract-Tinerld, WptExtractTimerkepeat,
294 -- and ptExtractTimerInterval

295 -- LEAST LIKELY cases follow:

296 when tae wpt.WPT-WINDOW -EVENT => null

297 -- WPT-WINDOW-EVENT can be caused by user acknowledgement
298 -- of a Wpt-PanelMessage or windows which you
299 -- directly create with X (not TAE panels).-
300 -- You MIGHT want to use WptRxtractjcEventType here.

74

301 --

302 -- DO NOT use Wpt_Extract_Parm_xEvent since this is not
303 -- a WPTSPARMLEVENT; you'll get a "storage error".

304 when taewpt.WPT_HELPEVENT => -- OR null
305 textjio.put("ERROR: WPTIELP_EVENT: ");
306 text_io.put_line("should never see; reserved for TAE use");

307 when tae-wpt.WPTINTERRUPTEVENT => -- OR null ;
308 textjio.put("ERROR: WPTINTERRUPTEVENT: a);

309 text_io.put_line("should never see; reserved for TAE use");

310 when OTHERS =>
311 textjio.put ("FATAL ERROR: Unknown WptNextEvent Event Type: ");
312 textjio.put (wpteventtype'image(etype)

313 textjio.put-line (" ... Forcing exit.");

314 -- exit; -- or raise an exception

315 end case; -- NOTE: Do not add statements between here and "end loop EVENTLOOP"

316 -- This single line connects the input integer value, UTILIZATION, to

317 -- the results panel and sends the value to "graph" as a real number,
318 -- which is a required conversion due to the expected data type of a

319 -- stripchart generated using TAE.
320 TAEWPT.WPTSETREAL(resultsjinfo.panelhid, "graph", TAEFLOAT (UTILIZATION));

321 -- Update all out parameters using local variables

322 datarate := local_data rate;

.323 dataperiod := local_data-period;

324 datasize := localdatasize;
325 start-stop := local-start-stop;

326 end USERINTERFACE;

327 begin

328 TextIO.PutLine("Channel CAT (Capacity Analysis Tool)");

329 TextIO.PutLine("Developed by Capt. Mike Coleman, USMC");
330 TextIO.PutjLine(---------"-----------------------------);

331 f-forcelower (FALSE); -- permit upper/lowercase file names

332 tae-wpt.WptInit ("",theDisplay);

333 tae.wpt.WptNewEvent (wptEvent);

334 initializePanels ("channel-cat.res"); -- single call
335 tae-wpt.wpt-settimeout(l);

336 end userinterface-pkg;

75

76

APPENDIX D. TESTING/VALIDATION CRITERIA AND RESULTS

Channel CAT TestinagValidation Criteria

Validation set #1 (Boundary checks):

Test 1 (lower boundary):

data size : 1 byte
data period : 1 second
data rate : 1 byte/second
Expected results : 100 % use

Test 2 (upper boundary):

data size : 4000 bytes
data period : 1 second
data rate : 4000 bytes/second
Expected results : 100 % use

Test 3 (max capacity @ half speed):

data size : 4000 bytes
data period : 2 seconds
data rate : 2000 bytes/second
Expected results : 100 % use

77

Validation set #2 (50% max capacity):

Test #1 (low rate/size):

data size : 1 byte
data period : 2 seconds
data rate : 1 byte/second
Expected results : 50 %

Test #2 (high rate/size):

data size : 4000 bytes
data period : 2 seconds
data rate : 4000 bytes/second
Expected results : 50 %

Test #3 (high rate/mid size):

data size : 2000 bytes
data period : 1 second
data rate : 4000 bytes/second
Expected results : 50 %

Test 3.b (mid rate/size):

data size : 2000 bytes
data period : 2 seconds
data rate : 2000 bytes/second
Expected results : 50 %

78

Validation set #3 (parameter impact):

Control parameters (reference):

data size : 1000 bytes
data period : 10 seconds
data rate : 100 bytes/second
Expected results : 100 %

Test #1 (excessive data size):

data size : 1001 bytes
data period : 10 seconds
data rate : 100 bytes/second
Expected results : >100 %

Test #2 (data transmitted too often):

data size : 1000 bytes
data period : 9 seconds
data rate : 100 bytes/second
Expected results : >100 %

Test #3 (data rate is too slow):

data size : 1000 bytes
data period : 10 seconds
data rate : 99 bytes/second
Expected results : >100 %

Test #4 (data size not max):

data size : 999 bytes
data period : 10 seconds
data rate : 100 bytes/second
Expected results : <100 %

Test #5 (period not max):

data size : 1000 bytes
data period : 11 seconds
data rate : 100 bytes/second
Expected results : <100 %

Test #6 (rate faster than needed):

data size : 1000 bytes
data period : 10 seconds
data rate : 101 bytes/second
Expected results : <100 %

79

Channel CAT Testing/Validation Results

Validation set #1 (Boundary checks):

Test 1 (lower boundary):

data size : 1 byte
data period : 1 second
data rate : 1 byte/second
Expected results : 100 % use
Graphical results : peak at 100% (red) and

depletes to 0.
Notes & comments : PASS w/ no restrictions.

Test 2 (upper boundary):

data size : 4000 bytes
data period : 1 second
data rate : 4000 bytes/second
Expected results : 100 % use
Graphical results : peak at 100% (red) and

depletes to 0.
Notes & comments : PASS w/ no restrictions.

Test 3 (max capacity G half speed):

data size : 4000 bytes
data period : 2 seconds
data rate : 2000 bytes/second
Expected results : 100 % use
Graphical results :peak at 100% (red) and

depleted to 0, but at
half the rate compared to
above.

Notes & comments : PASS w/ no restrictions.

80

Validation set #2 (50% max capacity):

Test #1 (low rate/size):

data size : 1 byte
data period : 2 seconds
data rate : 1 byte/second
Expected results : 50 %
Graphical results : peak at 50% and then

depleted to 0.
Notes & comments : PASS w/ no restrictions.

Test #2 (high rate/size):

data size : 4000 bytes
data period : 2 seconds
data rate : 4000 bytes/second
Expected results : 50 %
Graphical results : peak at 50% and then

depleted to 0.
Notes & comments : PASS w/ no restrictions.

Test #3 (high rate/mid size):

data size : 2000 bytes
data period : 1 second
data rate : 4000 bytes/second
Expected results : 50 %
Graphical results : peak at 50% and then

depleted to 0.
Notes & comments : PASS w/ no restrictions.

Test 3.b (mid rate/size):

data size : 2000 bytes
data period : 2 seconds
data rate : 2000 bytes/second
Expected results : 50 %
Graphical results : peak at 50% and then

depleted to 0.
Notes & comments : PASS w/ no restrictions.

81

Validation set #3 (parameter impact):

Control parameters (reference):

data size : 1000 bytes
data period : 10 seconds
data rate : 100 bytes/second
Expected results 100 %
Graphical results : peak at 100% (red), and

incrementally depleted
by 5% down to 0.

Notes & comments : PASS w/ no restrictions.
Control conditions valid.

Test #1 (excessive data size):

data size : 1001 bytes
data period : 10 seconds
data rate : 100 bytes/second
Expected results : >100 %
Graphical results : The impact of increasing

the data size took 5
transmission periods before
an increasing usage was seen.
Increases were 1% amounts.

Notes & comments : delay in utilization being
displayed is due to rounding
of display values. Actual tool
variables held accurate values
and maintain fidelity.

PASS with above restriction noted.
Test #2 (data transmitted too often):

data size : 1000 bytes
data period : 9 seconds
data rate : 100 bytes/second
Expected results : >100 %
Graphical results : Changes from control conditions

were immediately visible, and the
changes to utilization's max value
were much larger than before (11%).

Notes & comments : The impact of changing the period
had a fairly dramatic effect.

PASS w/ no restrictions.
Test #3 (data rate is too slow):

data size : 1000 bytes
data period : 10 seconds
data rate : 99 bytes/second
Expected results : >100 %
Graphical results : Utilization value was immediately

affected, causing a slow, but steady
increase in peak utilization by 1%
each transmission.

Notes & comments : Impact of decreasing the rate was
quickly noticable, but small.

PASS w/ no restrictions.
Test #4 (data size not max):

data size : 999 bytes

82

data period : 10 seconds
data rate : 100 bytes/second
Expected results : <100 %
Graphical results No changes from control conditions

noted (5 minutes run time). Mid-test
changes to data size finally yielded a
change to displayed utilization at 994.

Notes & comments : Necessity of changing data size to smaller
value is also explained by integer rounding
being done with UTILIZATIONCALCULATOR.

PASS with above restriction noted.
Test #5 (period not max):

data size : 1000 bytes
data period : 11 seconds
data rate : 100 bytes/second
Expected results : <100 %
Graphical results : Change to utilization was immediate.
Notes & comments : PASS w/ no restrictions.

Test #6 (rate faster than needed):

data size : 1000 bytes
data period : 10 seconds
data rate : 101 bytes/second
Expected results : <100 %
Graphical results : Change to utilization was immediate.
Notes & comments : PASS w/ no restrictions.

83

84

INITIAL DISTRIBUTION LIST

Number of Copies
1. Defense Technical Information Center ... 2

8725 John J. Kingman Road., Ste 0944
Ft. Belvoir, VA. 22060-6218

2. Dudley Knox Library ... 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Director, Training and Education ... 1
MCCDC, Code C46
1019 Elliot Rd.
Quantico, VA 22134-5027

4. Director, Marine Corps Research Center .. 2
MCCDC, Code C40RC
2040 Broadway Street
Quantico, VA 22134-5107

5. Director, Studies and Analysis Division ... 1
MCCDC, Code C45
3300 Russell Road
Quantico, VA 22134-5130

6. M arine Corps Representative ... 1
Naval Postgraduate School
Code 037, Bldg. 234, HA-220
699 Dyer Road
Monterey, CA 93940

7. Marine Corps Tactical Systems Support Activity ... 1
Technical Advisory Branch
Attn: Maj. J.C. Cumnmiskey
Box 555171
Camp Pendleton, CA 92055-5080

85

8. Dr. Luqi, Code CS/Lq .. 5
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5002

9. CDR Michael J. Holden USN, Code CS/Hm ... 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5002

10. Dr. Ted Lewis, Code CS/Le .. 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5002

11. E C J6-N P .. 1
HQUSEUCOM
Unit 30400 Box 1000
APO, AE 09128

12. Capt. Michael G. Coleman USM C .. 2
572 Holloway Road
Annapolis, MD
21402

86

